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Explorations on the 
Sierpinski Gasket Graph

In [6] the author describes the general properties of 
fractals and elaborates on the construction of a specific 
well-known fractal, the Sierpinski Triangle. The article 

delves into how pre-service teachers can explore various 
attributes of the fractal, such as the number of shaded 
triangles and shaded area at each stage. In this article we 
link the Sierpinski triangle (also known as the Sierpinski 
Gasket) to graph theory. We illustrate how the Sierpinski 
Gasket is related to the Sierpinski Gasket graph and explore 
Eulerian and Hamiltonian cycles in the graph using the 
CAS Mathematica.

Some mathematical preliminaries
In this section we shall elaborate on the mathematical 
concepts and definitions which are required for 
understanding the properties and characteristics of the 
Sierpinski Gasket graph.

The Sierpinski Gasket is a strictly self-similar fractal. This 
means that any arbitrary portion of the fractal at any given 
stage is a copy (at a reduced scale) of some previous stage of 
the fractal. It is initiated by considering a shaded or coloured 
equilateral triangular region whose sides are of unit length, 
and joining the midpoints of the three sides to create four 
smaller equilateral triangular regions. Once this is done, the 
central triangle is removed, leaving three smaller equilateral 
triangles. The initial equilateral triangular region is referred 
to as stage 0, and the next stage which comprises three scaled 
down smaller triangles (and a triangular hole) is stage 1 of 
the fractal. To continue the construction, the same process 
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is repeated on the three equilateral triangles of 
stage 1 to obtain stage 2 as shown in Figure 1. 
This process of replication continues wherein 
each smaller triangle is split into three still smaller 
triangles by joining the midpoints of these 
triangles and removing the central triangle. The 
reader may find the construction process in the 
article mentioned at the beginning of this article.

The next few definitions are related to 
graph theory, which is the study of graphs. 
In the context of graph theory, graphs are 
mathematical representations of pairwise 
relationships between objects.

A graph is a structure that consists of a set of 
vertices or nodes, denoted by V, and a set of edges, 
denoted by E, which consists of two-element 
subsets of V.

The number of vertices connected to a given 
vertex v through an edge is the degree of that 
vertex and is denoted by "deg" (v).

A walk in a graph G is a finite sequence of 
consecutive edges and vertices that are all 
connected. A walk in which all the edges are 
distinct, that is, no edge is repeated, is called a 
trail.

A trail in which all vertices are distinct is called a 
path. If the walk ends at the same vertex where it 
began, then it is said to be closed. A closed path 
containing at least one edge is called a cycle.

A graph G is connected if there is a path between 
every pair of vertices in G. 

A graph is bipartite if its vertices can be separated 
into two disjoint sets such that every edge in 
the graph connects a vertex in one set to a 

vertex in the other. However, there are no edges 
connecting pairs of vertices from the same set. 
An example of a bipartite graph is shown in 
Figure 2 where the blue and red vertices are 
disjoint sets and all the edges (the black lines) 
connect a blue vertex to a red one. However, 
there are no edges among the blue vertices nor 
the red ones.

 

Figure 2. An example of a bipartite graph.

A connected graph G is Eulerian if there exists a 
closed trail containing every edge of G. Such a 
trail is called a Eulerian trail.

 

Figure 3. Graph A is Eulerian, while 
Graph B is non-Eulerian 

A connected graph G is Hamiltonian if it 
contains a closed walk which passes through 
every vertex exactly once and in which no 
edge is repeated. Subsequently, a graph G is 
Hamiltonian if it contains a Hamiltonian cycle. 
Figure 4 is an example of a Hamiltonian cycle in 
a dodecagon graph.

Figure 1. The first five stages of the Sierpinski 
gasket fractal. Image Credit: Fractal Foundation



80 Azim Premji University At Right Angles, November 2023

Figure 4. Hamiltonian Dodecagon graph. 
Image credit: ResearchGate 

The Sierpinski gasket graph and its properties
The Sierpinski Gasket Graph is the graph formed 
when the fractal of the same name is recognized 
as a system of edges and vertices rather than as a 
system of triangles. This is illustrated in Figure 
5. It has the following properties: it is Eulerian, 
Hamiltonian, non-bipartite and connected. This 
means that it is possible to find a cycle which starts 
at a vertex, traverses each vertex and each edge 
exactly once. Further, it cannot be separated into 
two distinct sets of vertices A and B, such that all 
edges connect vertices in A with those in B. 

Figure 5. Stages 0, 1 and 2 of the Sierpinski gasket graph

Hamiltonian paths in the Sierpinski gasket 
graph
In this section we shall illustrate that the 
Sierpinski gasket graph is Hamiltonian, that is, it 
has a Hamiltonian path. A Hamiltonian path is 
a non-empty consecutive succession of edges that 
covers all the vertices in a graph exactly once. A 
Hamiltonian cycle is a closed walk in which all 
vertices in the graph appear exactly once and it 
ends at the same point at which it started. To 
determine whether a graph is Hamiltonian or not 
is a non-trivial problem. 

Due to the Sierpinski graph’s fractal nature 
and connectedness, there exists an inductive 
method of constructing Hamiltonian cycles in 
any given stage of the graph. For any stage n, we 
identify a Hamiltonian path and replicate this 
path in the three copies of the nth iteration that 
constitute the (n + 1)th iteration. This has been 
illustrated in Table 1 for n = 0, 1, 2 and 3, where 
all Hamiltonian paths (in the nth iteration) 
are indicated in blue and corresponding 
Hamiltonian cycles (in the (n + 1)th iteration) 
are represented in red.

Iteration
Hamiltonian path 
in nth iteration

Hamiltonian cycle 
in (n+1)th iteration

n = 0

n = 1

n = 2

n = 3

Table 1.

We proceed by mathematical induction on n, or 
the nth iteration of the fractal graph. Consider the 
base case n = 0, the generator of the fractal graph, 
or the equilateral triangle from which the fractal 
is constructed. The generator itself is trivially 
Hamiltonian, since it is a closed loop where each 
of its three vertices is visited exactly once.
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For our induction hypothesis, we shall assume 
that the Sierpinski Gasket graph of stage k is 
Hamiltonian, i.e., it contains a Hamiltonian 
path. We will prove that the Sierpinski 
Gasket graph of the (k + 1)th iteration is also 
Hamiltonian. Note that the (k + 1)th iteration 
of the graph is constructed using three replicas 
of the kth iteration. Before proceeding further, 
we need to introduce a nomenclature with 
regard to the vertices of the graph. The red 
vertices in figure 6 are referred to as apex 
vertices and the blue ones are referred to as 
midpoint vertices.

Figure 6. Apex and midpoint vertices 
of the Sierpinski Gasket graph

From our induction hypothesis, where we 
assumed that the kth iteration of the fractal 
graph is Hamiltonian, we can replicate the 
Hamiltonian path of the kth stage to traverse all 
three replicas of the (k + 1)th stage. Since the 
apex vertices of the three replicas in the (k + 1)th 
stage are connected through three edges (shown 
in black), we can traverse these edges to create a 
cycle which passes through all the vertices of the 
(k + 1)th stage exactly once. Therefore, this cycle 
is Hamiltonian by definition. 

For example, the path in stage n = 0 can be 
reproduced using a similar method in its three 
replicas in stage n = 1 to produce a Hamiltonian 
cycle. This can be done by travelling the paths 
in the three replicas via the three connecting 
edges, as illustrated in the first row of Table 1. 

Similarly, the path in stage n = 1 can be produced 
in the three replicas present in stage n = 2. These 
paths can be connected to make a Hamiltonian 
cycle via the three connecting midpoint vertices 
(marked as black dots) of these replicas.

However, owing to the graph’s fractal nature, as n 
increases, the transition from the nth to the (n + 1)
th stage becomes harder to construct. We will now 
discuss a method that can be used to construct 
Hamiltonian cycles on the Sierpinski gasket graph 
using Mathematica which can be accessed via the 
website wolframcloud.com.

Introduction to Mathematica
Wolfram Mathematica is a versatile software 
system based on the Wolfram language. It has 
powerful reach across various fields including 
mathematics, computer science, economics, 
statistics, machine learning, geometry and data 
science. It has numerous advantages which 
include a user-friendly programming interface, 
with a programming language built to resemble 
English-like function names and a coherent 
design. Its algorithms are very efficient, capable 
of tackling large-scale problems, due to its large 
database based on the Wolfram Knowledgebase. 

In this section we will explore the graph 
theoretic features of the Sierpinski gasket graph 
with respect to programming components 
in the Combinatorica package of Wolfram 
Mathematica. 

Constructing the Sierpinski Gasket Graph 
using Mathematica
In order to construct the graph, we need to use 
the built-in function in Mathematica called 
GraphData, which, depending on the type of 
command in the suffix, returns the required 
graph based on its conventional name, usually 
accompanied by its properties or its class. The 
Sierpinski gasket graph is obtained using the 
command GraphData [{“Sierpinski, 
n”}]. Here, n stands for the iteration number, 
and can range only between 0 and 5.
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For example, the 5th iteration of the Sierpinski 
gasket graph is generated in Mathematica as 
shown in Figure 6.

Constructing Hamiltonian Cycles using 
Mathematica
The FindHamiltonianCycle[g] function [4] 
helps us find a Hamiltonian cycle in the graph g, 

by giving us vertex directions with respect to 
labelled vertices in the graph. Mathematica 
chooses to label vertices using numbers. The 
HighlightGraph function helps us highlight 
the said cycle through a specific iteration 
of the graph. Figures 7 and 8 illustrate the 
Hamiltonian cycles in stages 1 and 2 of the 
Sierpinski gasket graph respectively.

Figure 6. The fifth iteration of the Sierpinski gasket graph using Mathematica

Figure 7. Hamiltonian cycle of stage 1 of the Sierpinski gasket graph
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Figure 9 shows the output of the Mathematica 
codes when the functions are applied on the fifth 
iteration of the Sierpinski Gasket graph.

Eulerian Paths in the Sierpinski gasket graph
An Eulerian circuit is a closed walk in which each 
edge appears exactly once. It is derived from the 
Seven Bridges of Konigsberg Problem (which can 
be studied in detail in the article Leonard Euler’s 
Solution to the Konigsberg Bridge Problem, by Teo 
Paoletti), wherein one must cross the seven bridges 
in a town without repeating a bridge. The bridges 
create a graph structure, and this problem was first 
solved by the mathematician Leonhard Euler. 

Before exploring Eulerian paths, we need to 
mention an important result here.

A graph G is Eulerian if and only if every vertex 
in G is of even degree. An example is illustrated 
in the below graph.

Figure 10. Example of an Eulerian graph in which 
every vertex is of even degree, that is, there are an even 

number of edges attached to every vertex.

Figure 8. Hamiltonian cycle of stage 2 of the Sierpinski gasket graph

Figure 9. Hamiltonian cycle of stage 1 of the Sierpinski gasket graph
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An intuitive explanation for the even degree 
argument is that while travelling a graph, if it has 
an Eulerian cycle, we must enter every vertex via 
one edge and exit via another, i.e., there must 
be a receiving edge and a leaving edge. It can be 
shown that every vertex in the Sierpinski Gasket 
graph is of even degree, and hence the graph is 
Eulerian. Referring to figure 6, each apex vertex 
is of degree 2 since it is incident on only two 
other vertices. The midpoint vertices have degree 
4, since they are incident on two vertices located 
in front of the vertex and two towards the right 
and left directions of that particular vertex. 
Therefore, all vertices in the Sierpinski Gasket 
graph have even degree. 

Constructing Eulerian cycles using Mathematica
The FindEulerianCycle[g] function 
[5] helps us find an Eulerian cycle in the 
graph g, by giving us vertex directions with 
respect to labelled vertices in the graph. The 
HighlightGraph function helps us highlight 
the cycle through a specific iteration of the 
graph. The code (as shown in Figure 10) also 
displays the vertex progression of the cycle. 
The output figure of this code, unlike the 
Hamiltonian cycle code, does not highlight 
the edges since all the edges are covered in an 
Eulerian cycle. Thus, all the edges appear as  
one colour.

Real-world Applications
The Sierpinski Gasket graph has several 
applications. It is used in modelling quantum 
transport and quantum walks as discussed in 
[2]. It is used to investigate electronic properties 
and molecular chains to simulate experimental 
synthesised fractal nanostructures [3]. It also has 
many applications in the area of cellular automata.

It is modelled as a planar superconducting fractal 
lattice and exposed to a perpendicular magnetic 
field. The self-similarity of the fractal plays a role 
in addressing two central issues, namely, flux-
quantization phenomena in loops and the low-
field scaling behaviour of the magneto-inductance.

The Sierpinski triangle is used as a model for a 
bowtie antenna, showing advantages such as an 
efficient SERS substrate, 14% shrinkage (more 
compact) and higher resonance. The transducer 
of Sierpinski curve geometry was utilised for 
the miniaturisation of a microstrip patch strain 
sensor. The results showed the possibility of a 
dimension reduction due to the fractal structure.

Conclusion
In this article we have made connections 
between the Sierpinski gasket fractal and graph 
theory by exploring some properties of the 
Sierpinski Gasket graph. These properties elicit 

Figure 10: Generating an Eulerian cycle in the 4th iteration of the Sierpinski gasket graph.
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the intricate nature of these fractal graphs. 
In particular, we have explored Eulerian and 
Hamiltonian cycles on the Sierpinski Gasket 
graph. However, such cycles tend to become 
intricate and complex as the number of stages 
of the fractal increases and it becomes difficult 

to construct these manually. Computer Algebra 
Systems such as Mathematica can be effectively 
used to identify such cycles. The results are faster 
and more accurate. Thus, this article illustrates 
the importance of computer algorithms with 
respect to cycle construction in graphs.
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