Haras Numbers

HARAGOPAL R

Definition: A Haras number is a n-digit number $(n \geq 3)$ with the property that it is equal to sum of all the $(n-1)$-digit numbers whose digits are digits of the original number, the circular wrap-around order being retained.

For example, the 3-digit number $a b c$ is a Haras number if $a b c=a b+b c+c a$, i.e., if

$$
100 a+10 b+c=(10 a+b)+(10 b+c)+(10 c+a)
$$

which reduces to $100 a+10 b+c=11(a+b+c)$, and then to

$$
89 a=b+10 c .
$$

Similarly, the 4-digit number $a b c d$ is a Haras number if $a b c d=a b c+b c d+c d a+d a b$, i.e., if $10^{3} a+10^{2} b+$ $10 c+d$ is equal to

$$
\begin{aligned}
& (100 a+10 b+c)+(100 b+10 c+d) \\
& \quad+(100 c+10 d+a)+(100 d+10 a+b)
\end{aligned}
$$

This reduces to $1000 a+100 b+10 c+d=$ $111(a+b+c+d)$, and then to

$$
889 a=11 b+101 c+110 d
$$

The 5-digit number $a b c d e$ is a Haras number if $\boxed{a b c d e}=\boxed{a b c d}+b c d e+c d e a+$ deab $+e a b c$. This reduces to

$$
\begin{aligned}
10^{4} a+10^{3} b+10^{2} c+10 d+e & =1111(a+b+c+d+e), \\
\text { or: } 8889 a & =111 b+1011 c+1101 d+1110 e .
\end{aligned}
$$

The general pattern may be seen from the above. The circular wrap-around property ensures that when we compute the sum of all the $(n-1)$-digit numbers whose digits are digits of the original number, each digit occurs with the same multiplicity.

More generally, the n-digit number $a_{n-1} a_{n-2} \ldots a_{2} a_{1} a_{0}$ is a Haras number if

$$
10^{n-1} a_{n-1}+10^{n-2} a_{n-2}+\ldots+10 a_{1}+a_{0}=111 \ldots 1\left(a_{n-1}+a_{n-2}+\ldots+a_{1}+a_{0}\right),
$$

where $111 \ldots 11$ has $(n-1)$ digits.
Let us now solve these equations and obtain some instances of such numbers. On solving the equations, we discover to our surprise that there only one such 3-digit number and only one such 4-digit number. Let us see why.

The case of 3-digit numbers.

The 3-digit number $a b c$ is a Haras number if $89 a=b+10 c$. We must find all possible solutions to this equation, a, b, c being digits with $a \neq 0$. Since b, c are digits, the quantity $b+10 c$ is at most 99 , which implies that $a=1$. Hence $b+10 c=89$, and it is easy to deduce that $c=8$ and $b=9$. Hence the number is 198 . (So, there is just one possibility.) We verify that it does satisfy the property:

$$
198=19+98+81 .
$$

The case of 4-digit numbers.

The 4-digit number $a b c d$ is a Haras number if $1000 a+100 b+10 c+d=111(a+b+c+d)$. Note that this condition implies that $a b c d$ is a multiple of 111 and therefore a multiple of 3. Hence the sum of the digits is a multiple of 3 . This implies that $a b c d$ is a multiple of 333 and therefore a multiple of 9 . Hence the sum of the digits is a multiple of 9. This implies that $a b c d$ is a multiple of 999 . Hence $a b c d$ is one of $1998,2997,3996,4995, \ldots$ The sum of the digits of all these possibilities is 27 (all four-digit multiples of 999 have this form), so it follows that $a b c d=111 \times 27=2997$. (So, there is just one possibility.) We verify that it does satisfy the property:

$$
2997=299+997+972+729 .
$$

The case when the number of digits is 5 or more.

For larger numbers of digits, we may use similar reasoning (as we did above), but it is simpler to resort to a computer-assisted search. Here we report only the results.

- 5-digit numbers: there are just three such numbers: 13332, 26664, and 39996. Thus, we have

$$
39996=3999+9996+9963+9639+6399
$$

and similarly for the others.

- 6 -digit numbers: there is just one such number: 499995 . Thus, we have:

$$
499995=49999+99995+99954+99549+95499+54999 .
$$

- 7-digit numbers: there is just one such number: 5999994.
- 8 -digit numbers: there are just three such numbers: 23333331, 46666662 , and 69999993.
- 9-digit numbers: there is just one such number: 799999992.
- 10-digit numbers: there is just one such number: 8999999991.

HARA GOPAL R works as a mathematics teacher in Municipal High School, Kurnool, Andhra Pradesh. He is very interested in finding new properties and relationships between numbers and geometrical figures. He may be contacted at rharagopal@gmail.com

