एकवृन्तगतफलद्वयन्यायः। 'Two Fruits on One Stalk'

एकवृन्तगतफलद्वयन्यायः is a popular maxim in Sanskrit literature used to describe situations when one effort gives two or many results simultaneously. Sometimes while solving problems, we stumble upon interesting results different from the intended results. One such example is given below.

Problem: Using ruler and compass, construct the triangle whose median lengths are given.

Construction method

Let the given median lengths be represented by $\mathrm{M} a$ (from vertex A), $\mathrm{M} b$ (from vertex B), and $\mathrm{M} c$ (from vertex C).

Step 1. Draw $\mathrm{BD}=\mathrm{M} b$, and mark point G on BD at a length of $\frac{1}{3} \mathrm{M} b$ from D.
Step 2. Construct $\triangle \mathrm{GDH}$, with $\mathrm{HG}=\frac{1}{3} \mathrm{M} a$ and $\mathrm{HD}=\frac{1}{3} \mathrm{M} c$. (Use standard construction methods to trisect segments $\mathrm{M} a$, $\mathrm{M} b$, and Mc .)

Step 1

Step 2

Keywords: Exploration, geometric construction, triangles, medians, areas.

Step 3. Extend GH to point A with $\mathrm{GH}=\mathrm{HA}$.

Step 3
Step 4. Construct segment AD and extend AD to point C with $\mathrm{AD}=\mathrm{DC}$.

Step 4
Step 5. Construct $\triangle A B C$. This triangle will have median lengths as $\mathrm{M} a, \mathrm{M} b$, and $\mathrm{M} c$.

Step 5

Analysis and justification

- Refer Figure 1.
- Let $\mathrm{BD}=\mathrm{M} b, \mathrm{AE}=\mathrm{M} a$, and $\mathrm{CF}=\mathrm{M} c$ be the medians of $\triangle A B C$ to be constructed using compass and ruler. G is the centroid of $\triangle A B C$ which divides the medians in the ratio of 2 : 1 , the larger parts being towards the vertices of the triangle.
- Let H be the mid-point of AG. Since AG is $\frac{2}{3} \mathrm{M} a, \mathrm{HG}=\frac{1}{3} \mathrm{M} a$.
- In $\triangle \mathrm{AGC}, \mathrm{H}$ and D being midpoints of sides AG and AC, HD will be half of GC and parallel to GC (Midpoint theorem).
- Since $\mathrm{GC}=\frac{2}{3} \mathrm{Mc}$ and HD being half of GC , $\mathrm{HD}=\frac{1}{3} \mathrm{M} c$.
- Now HD $=\frac{1}{3} \mathrm{M} c, H G=\frac{1}{3} \mathrm{M} a$ and $\mathrm{GD}=\frac{1}{3} \mathrm{M} b$.
- We started the construction with median BD and \triangle GDH with $\mathrm{HG}=\frac{1}{3} \mathrm{M} a, \mathrm{HD}=\frac{1}{3} \mathrm{Mc}$, and $\mathrm{GD}=\frac{1}{3} \mathrm{M} b$.
- GH was extended to get point $\mathrm{A}(\mathrm{HA}=\mathrm{GH})$ and AD was extended to get point $\mathrm{C}(\mathrm{AD}=$ DC), thus completing the construction of $\triangle \mathrm{ABC}$.

Figure 1
Note: Another interesting fact can be inferred from the above figure. $\triangle \mathrm{GDH}$ has $\mathrm{HG}=\frac{1}{3} \mathrm{Ma}$, $\mathrm{HD}=\frac{1}{3} \mathrm{M} c$ and $\mathrm{GD}=\frac{1}{3} \mathrm{M} b$. Therefore, $\Delta \mathrm{GDH}$ is a scaled-down (similar triangle) version of the triangle formed by $\mathrm{M} a, \mathrm{M} b$, and $\mathrm{M} c$ (medians of $\triangle \mathrm{ABC})$ with a scale factor of $3: 1$.

If we take the area of $\triangle \mathrm{GDH}$ to be 1 sq. unit, then the area of the triangle formed by $\mathrm{M} a, \mathrm{M} b$, and Mc (medians of $\triangle \mathrm{ABC}$) will be 9 sq. units since these two triangles are similar with a scale factor of $3: 1$.

Since $\mathrm{HG}=\mathrm{HA}$, Area of $\triangle \mathrm{GDH}=$ Area of $\triangle \mathrm{ADH}$ $=1$ sq. unit (equal base and same height).

Area of $\triangle \mathrm{ADG}=$ Area of $\triangle \mathrm{GDH}+$ Area of $\triangle \mathrm{ADH}$ $=2$ sq. units.

Since $A D=D C$, Area of $\triangle A D G=$ Area of $\triangle C D G$ $=2$ sq. units (equal base and same height).

Area of $\triangle \mathrm{AGC}=$ Area of $\triangle \mathrm{ADG}+$ Area of $\triangle \mathrm{CDG}$ $=4$ sq. units.

But Area of $\triangle \mathrm{AGC}=\frac{1}{3} \mathrm{Area}$ of $\triangle \mathrm{ABC}$. Hence area of $\triangle A B C=3$ times area of $\triangle A G C=12$ sq. units.

From the above it can be seen that area of the triangle formed by $\mathrm{M} a, \mathrm{M} b$, and $\mathrm{M} c$ (medians of $\triangle A B C$) is 9 sq. units and area of $\triangle A B C$ is 12 sq. units.

Therefore, the area of the triangle formed by the medians of a triangle is $\frac{3}{4}$ the area of the parent triangle.

A S RAJAGOPALAN has been teaching in Rishi Valley School KFI for the past 18 years. He teaches Mathematics as well as Sanskrit. Earlier, he was working as an engineer. He is keenly interested in teaching mathematics in an engaging way. He has a deep interest in classical Sanskrit literature. He enjoys long-distance running. He may be contacted at ayilamraj@gmail.com

