Sums of Powers of Any Composite Number

SUJATA SINGHA

In 1997, David B. Sher visually established a well-known result on sums of powers of four [1, p.135]. He proved for any $r \in \mathbb{N}$,

$$
4^{r}-1=3 \sum_{k=0}^{r-1} 4^{k}
$$

i.e.,

$$
\frac{4^{r}-1}{4-1}=\sum_{k=0}^{r-1} 4^{k}
$$

In 2021, extending the same technique in three dimensions another results for sums of powers of eight [2] is established.

$$
8^{r}-1=7 \sum_{k=0}^{r-1} 8^{k}
$$

i.e.,

$$
\frac{8^{r}-1}{8-1}=\sum_{k=0}^{r-1} 8^{k}
$$

The primary aim of this short note is to visually establish sums of powers of any composite number.

For $9=3 \times 3$, we illustrate the above result in the following diagram. The above diagram also generalizes the result David B. Sher.

Keywords: Series, Composite numbers, patterns, visualisation.

Figure 1
Note that, in the 9^{3} grid, 8×9^{2} is represented by 8 squares with $9^{2}=81$ smaller squares.

$$
\begin{aligned}
9^{r} & =1+8.9^{0}+8.9^{1}+8.9^{2}+\ldots+8.9^{r-1} \\
\Rightarrow 9^{r}-1 & =8\left[9^{0}+9^{1}+9^{2}+\ldots+9^{r-1}\right] \\
\Rightarrow \frac{9^{r}-1}{8} & =\sum_{i=0}^{r-1} 9^{i} \\
\sum_{i=0}^{r-1} 9^{i} & =\frac{9^{r}-1}{9-1}
\end{aligned}
$$

Note: Let $x=m \times n$, be any composite number, m, n be two natural numbers, then

$$
\sum_{i=0}^{r-1} x^{i}=\frac{x^{r}-1}{x-1}
$$

Now, I extend the above result in 3D for the composite number 27.

Figure 2

For $27=3 \times 3 \times 3$, we illustrate the above result in Figure 2 .
Please note that, in the 27^{3} grid, 26×27^{2} is represented by 26 cubes with $27^{2}=729$ smaller cubes.

$$
\begin{aligned}
(27)^{r} & =1+26 \cdot(27)^{0}+26 \cdot(27)^{1}+26 \cdot(27)^{2}+\ldots+26 \cdot(27)^{r-1} \\
\Rightarrow(27)^{r}-1 & =26\left[(27)^{0}+(27)^{1}+(27)^{2}+\ldots+(27)^{r-1}\right] \\
\Rightarrow \frac{(27)^{r}-1}{26} & =\sum_{i=0}^{r-1}(27)^{i}
\end{aligned}
$$

Note: Let $x=m \times n \times p$, be any composite number, m, n, p be any three natural numbers. Then,

$$
\sum_{i=0}^{r-1} x^{i}=\frac{x^{r}-1}{x-1}
$$

For any composite number $x=m_{1} . m_{2} \ldots m_{k}$, one can use similar techniques to generalize the above two results in k-dimensions $(k \geq 2)$.

In this short note, I have tried to generalize [1] and [2] for any composite x with $x=m_{1} . m_{2} \ldots m_{k}$.

$$
\sum_{i=0}^{r-1} x^{i}=\frac{x^{r}-1}{x-1}
$$

Reference

1. Roger B. Nelsen. Proofs without Words III: More Exercises in Visual Thinking. MAA Press, 2015.
2. Rajib Mukherjee, Proofs without Words: Sums of Powers of Eight Mathematical Intelligencer 43, 60-61 (2021) (https://doi.org/10.1007/s00283-021-10087-5).

SUJATA SINGHA is currently pursuing a Master of Science in Mathematics at Murshidabad University. She graduated from Kalayani University's Berhampore Girls' College with a B.Sc. in Mathematics. She is interested in visual mathematics. Outside of studies, she spends time with friends and family. She may be contacted at sujatasingha25@gmail.com.

