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Problems based on the 
AM-GM Inequality - 
Part II
TOYESH PRAKASH 
SHARMA In this two-part article, we consider problems from

various sources which are solved using the AM-GM
inequality. We list the problems first and give the

solutions later. We continue from where we left off in Part I.

Problems

Problem 4. Given that x, y, z are positive real numbers and
xy+ yz+ zx = 1, find the least value of

x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2
. (4)

This problem is from the SSMJ Problem corner, December
2014; it was proposed by Arkady Alt [5].

Problem 5. Let a, b, c be positive real numbers. Prove that
√

a2 + ca+
√

b2 + bc+
√

c2 + ca ≤
√
2(a+ b+ c). (5)

This problem was published in Crux Mathematicorum; it was
proposed by Jose Luiz Diaz Barrero [6].
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Problem 6. Let x, y, z be positive real numbers such that x+ y+ z = 3. Prove that

x4 + x2 + 1
x2 + x+ 1

+
y4 + y2 + 1
y2 + y+ 1

+
z4 + z2 + 1
z2 + z+ 1

≥ 3xyz. (6)

I found this problem at https://www.mat.uniroma2.it/ tauraso/AMM/AMM11815.pdf; it was proposed
by G. Apostolopoulos in American Mathematical Monthly, [7].

Problem 7. Let a, b, c be three positive real numbers such that ab+ bc+ ca = 2abc. Prove that

1√
ab

+
1√
bc

+
1√
ca

≤ 2. (7)

Solutions

Problem 4. Given that x, y, z are positive real numbers and xy+ yz+ zx = 1, find the least value of

x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2
.

Solution. From the AM-GM inequality, we have

x3

x2 + y2
= x− xy2

x2 + y2
≥ x− xy2

2xy
= x− y

2
.

Similarly, we have

y3

y2 + z2
≥ y− z

2
,

z3

z2 + x2
≥ z− x

2
.

Adding these three inequalities, we get

x3

x2 + y2
+

y3

y2 + z2
+

z3

z2 + x2
≥ x+ y+ z

2
=

3
2
· x+ y+ z

3

≥ 3
2
·
(
xy+ yz+ zx

3

)1/2

=

√
3
2

.

Hence the minimum value of x3
x2+y2 +

y3
y2+z2 +

z3
z2+x2 is

1
2

√
3.

Problem 5. Let a, b, c be positive real numbers. Prove that
√

a2 + ca+
√

b2 + bc+
√

c2 + ca ≤
√
2(a+ b+ c).
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Solution. We have:
√
a2 + ca+

√
b2 + bc+

√
c2 + ca =

1√
2
·
(√

2a · (a+ c) +
√

2b · (b+ c) +
√

2c · (c+ a)
)

≤ 1√
2
·
(
2a+ (a+ c)

2
+

2b+ (b+ c)
2

+
2c+ (c+ a)

2

)

=
1

2 ·
√
2
· (4a+ 4b+ 4c) =

√
2 · (a+ b+ c).

Problem 6. Let x, y, z be positive real numbers such that x+ y+ z = 3. Prove that

x4 + x2 + 1
x2 + x+ 1

+
y4 + y2 + 1
y2 + y+ 1

+
z4 + z2 + 1
z2 + z+ 1

≥ 3xyz.

Solution. We have

x4 + x2 + 1
x2 + x+ 1

+
y4 + y2 + 1
y2 + y+ 1

+
z4 + z2 + 1
z2 + z+ 1

=
(
x2 − x+ 1

)
+

(
y2 − y+ 1

)
+

(
z2 − z+ 1

)

= 3 · x
2 + y2 + z2

3
≥ 3 ·

(
x+ y+ z

3

)2

= 3.

Also:

3 = 3 ·
(
x+ y+ z

3

)3

≥ 3xyz,

hence proved.

Problem 7. Let a, b, c be three positive real numbers such that ab+ bc+ ca = 2abc. Prove that

1√
ab

+
1√
bc

+
1√
ca

≤ 2.

Solution (published in 2019 in the issue 1 of AMJ journal). From ab+ bc+ ca = 2abc we get

1
a
+

1
b
+

1
c
= 2.

Next, using the AM-GM inequality, we get

1
a
+

1
b
≥ 2√

ab
,

1
b
+

1
c
≥ 2√

bc
,

1
c
+

1
a
≥ 2√

ca
.
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By addition we get

1
a
+

1
b
+

1
c
≥ 1√

ab
+

1√
bc

+
1√
ca
,

and the stated result follows.
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