Problems based on the AM-GM Inequality Part II

TOYESH PRAKASH SHARMA

In this two-part article, we consider problems from various sources which are solved using the AM-GM inequality. We list the problems first and give the solutions later. We continue from where we left off in Part I.

Problems

Problem 4. Given that x, y, z are positive real numbers and $x y+y z+z x=1$, find the least value of

$$
\begin{equation*}
\frac{x^{3}}{x^{2}+y^{2}}+\frac{y^{3}}{y^{2}+z^{2}}+\frac{z^{3}}{z^{2}+x^{2}} . \tag{4}
\end{equation*}
$$

This problem is from the SSMJ Problem corner, December 2014; it was proposed by Arkady Alt [5].

Problem 5. Let a, b, c be positive real numbers. Prove that

$$
\begin{equation*}
\sqrt{a^{2}+c a}+\sqrt{b^{2}+b c}+\sqrt{c^{2}+c a} \leq \sqrt{2}(a+b+c) . \tag{5}
\end{equation*}
$$

This problem was published in Crux Mathematicorum; it was proposed by Jose Luiz Diaz Barrero [6].

Keywords: AM-GM inequality

Problem 6. Let x, y, z be positive real numbers such that $x+y+z=3$. Prove that

$$
\begin{equation*}
\frac{x^{4}+x^{2}+1}{x^{2}+x+1}+\frac{y^{4}+y^{2}+1}{y^{2}+y+1}+\frac{z^{4}+z^{2}+1}{z^{2}+z+1} \geq 3 x y z . \tag{6}
\end{equation*}
$$

I found this problem at https://www.mat.uniroma2.it/ tauraso/AMM/AMM11815.pdf; it was proposed by G. Apostolopoulos in American Mathematical Monthly, [7].

Problem 7. Let a, b, c be three positive real numbers such that $a b+b c+c a=2 a b c$. Prove that

$$
\begin{equation*}
\frac{1}{\sqrt{a b}}+\frac{1}{\sqrt{b c}}+\frac{1}{\sqrt{c a}} \leq 2 . \tag{7}
\end{equation*}
$$

Solutions

Problem 4. Given that x, y, z are positive real numbers and $x y+y z+z x=1$, find the least value of

$$
\frac{x^{3}}{x^{2}+y^{2}}+\frac{y^{3}}{y^{2}+z^{2}}+\frac{z^{3}}{z^{2}+x^{2}} .
$$

Solution. From the AM-GM inequality, we have

$$
\frac{x^{3}}{x^{2}+y^{2}}=x-\frac{x y^{2}}{x^{2}+y^{2}} \geq x-\frac{x y^{2}}{2 x y}=x-\frac{y}{2} .
$$

Similarly, we have

$$
\begin{aligned}
& \frac{y^{3}}{y^{2}+z^{2}} \geq y-\frac{z}{2} \\
& \frac{z^{3}}{z^{2}+x^{2}} \geq z-\frac{x}{2}
\end{aligned}
$$

Adding these three inequalities, we get

$$
\begin{aligned}
\frac{x^{3}}{x^{2}+y^{2}}+\frac{y^{3}}{y^{2}+z^{2}}+\frac{z^{3}}{z^{2}+x^{2}} & \geq \frac{x+y+z}{2}=\frac{3}{2} \cdot \frac{x+y+z}{3} \\
& \geq \frac{3}{2} \cdot\left(\frac{x y+y z+z x}{3}\right)^{1 / 2}=\frac{\sqrt{3}}{2} .
\end{aligned}
$$

Hence the minimum value of $\frac{x^{3}}{x^{2}+y^{2}}+\frac{y^{3}}{y^{2}+z^{2}}+\frac{z^{3}}{z^{2}+x^{2}}$ is $\frac{1}{2} \sqrt{3}$.
Problem 5. Let a, b, c be positive real numbers. Prove that

$$
\sqrt{a^{2}+c a}+\sqrt{b^{2}+b c}+\sqrt{c^{2}+c a} \leq \sqrt{2}(a+b+c) .
$$

Solution. We have:

$$
\begin{aligned}
\sqrt{a^{2}+c a}+\sqrt{b^{2}+b c}+\sqrt{c^{2}+c a} & =\frac{1}{\sqrt{2}} \cdot(\sqrt{2 a \cdot(a+c)}+\sqrt{2 b \cdot(b+c)}+\sqrt{2 c \cdot(c+a)}) \\
& \leq \frac{1}{\sqrt{2}} \cdot\left(\frac{2 a+(a+c)}{2}+\frac{2 b+(b+c)}{2}+\frac{2 c+(c+a)}{2}\right) \\
& =\frac{1}{2 \cdot \sqrt{2}} \cdot(4 a+4 b+4 c)=\sqrt{2} \cdot(a+b+c) .
\end{aligned}
$$

Problem 6. Let x, y, z be positive real numbers such that $x+y+z=3$. Prove that

$$
\frac{x^{4}+x^{2}+1}{x^{2}+x+1}+\frac{y^{4}+y^{2}+1}{y^{2}+y+1}+\frac{z^{4}+z^{2}+1}{z^{2}+z+1} \geq 3 x y z .
$$

Solution. We have

$$
\begin{aligned}
\frac{x^{4}+x^{2}+1}{x^{2}+x+1}+\frac{y^{4}+y^{2}+1}{y^{2}+y+1}+\frac{z^{4}+z^{2}+1}{z^{2}+z+1} & =\left(x^{2}-x+1\right)+\left(y^{2}-y+1\right)+\left(z^{2}-z+1\right) \\
& =3 \cdot \frac{x^{2}+y^{2}+z^{2}}{3} \geq 3 \cdot\left(\frac{x+y+z}{3}\right)^{2}=3
\end{aligned}
$$

Also:

$$
3=3 \cdot\left(\frac{x+y+z}{3}\right)^{3} \geq 3 x y z
$$

hence proved.
Problem 7. Let a, b, c be three positive real numbers such that $a b+b c+c a=2 a b c$. Prove that

$$
\frac{1}{\sqrt{a b}}+\frac{1}{\sqrt{b c}}+\frac{1}{\sqrt{c a}} \leq 2
$$

Solution (published in 2019 in the issue 1 of AMJ journal). From $a b+b c+c a=2 a b c$ we get

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2
$$

Next, using the AM-GM inequality, we get

$$
\begin{aligned}
& \frac{1}{a}+\frac{1}{b} \geq \frac{2}{\sqrt{a b}} \\
& \frac{1}{b}+\frac{1}{c} \geq \frac{2}{\sqrt{b c}} \\
& \frac{1}{c}+\frac{1}{a} \geq \frac{2}{\sqrt{c a}}
\end{aligned}
$$

By addition we get

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq \frac{1}{\sqrt{a b}}+\frac{1}{\sqrt{b c}}+\frac{1}{\sqrt{c a}}
$$

and the stated result follows.

References

1. Florin Rotaru, Mathematical Reflections 2009, J468-Solution, Issue-1,
https://www.awesomemath.org/wp-pdf-files/math-reflections/mr-2019-01/mr_6_2018_solutions_2.pdf
2. Mihaela Berindeanu, "Problem EM-55", Arhimede math., j. 5.1 (2018), pg. 33
3. Toyesh Prakash Sharma, "Generalization of Problem E 55", Arhimede math., 7.2 (2018), pg. 136
4. Albert Stadler, "Prob. 5303, Angel Plaza", SSMJ problem solution corner, Nov. 2014, pg. 7-9

TOYESH PRAKASH SHARMA has been interested in science, mathematics, and literature since high school. He has contributed mathematics articles to magazines such as Mathematical Gazette, Crux Mathematicorum, Parabola, AMJ, ISROSET, SSMJ, Pentagon, Octagon, La Gaceta de la RSME, At Right Angles, Fibonacci Quarterly, Mathematical Reflections, Irish Mathematical Society, Indian Mathematical Society, and Mathematical Student. He has also written two books for high school students, "Problems on Trigonometry" and "Problems on Surds." Currently he is doing his B Sc in Physics and Mathematics from Agra College, Agra, India. He may be contacted at toyeshprakash@gmail.com.

