
103Azim Premji University At Right Angles, November 2023

St
u

d
en

t 
C

o
rn

erMaxima and Minima 
using the Power Mean 
Inequality
TOYESH PRAKASH 
SHARMA & 
ETISHA SHARMA

The power mean inequality states the following:

For positive quantities a1, a2, · · · , an and p ≥ 1,

a1p + a2p + · · ·+ anp

n
≥

(a1 + a2 + · · ·+ an
n

)p
.

For 0 ≤ p ≤ 1, inequality reverses.

Proof
We know that for p ≥ 1, f (x) = xp is convex; the graph has
the following appearance (Figure 1):

Figure 1

From Figure 1 we have

OB ≥ OA,

⇒ f (a) + f (b)
2

≥ f
(a+ b

2

)
.

1
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Here f (a) = a p, f (b) = b p and f
(a+ b

2

)
=

(a+ b
2

)p
. Hence

a p + b p

2
≥

(a+ b
2

)p
.

This is the power mean inequality for two variables. Now let a = a1 + a2
2

and b = b1 + b2
2

. Then

(
a1 + a2

2

)p

+

(
b1 + b2

2

)p

2
≥




a1 + a2
2

+
b1 + b2

2
2




p

.

Using the power mean inequality for
(a1 + a2

2

)p
and

(b1 + b2
2

)p
we get:

a1p + a2p

2
+

b1p + b2p

2
2

≥

(
a1 + a2

2

)p

+

(
b1 + b2

2

)p

2
.

So,

a1p + a2p

2
+

b1p + b2p

2
2

≥




a1 + a2
2

+
b1 + b2

2
2




p

,

⇒ a1p + a2p + b1p + b2p

4
≥

(a1 + a2 + b1 + b2
4

)p
.

This is power mean inequality for four variables. Similarly for n quantities we have:

a1p + a2p + · · ·+ anp

n
≥

(a1 + a2 + · · ·+ an
n

)p
; p ≥ 1.

For 0 ≤ p ≤ 1 the same function i.e., f (x) = xp is concave function, so f (a) + f (b)
2

≤ f
(a+ b

2

)
and

a1p + a2p + · · ·+ anp

n
≥

(a1 + a2 + · · ·+ an
n

)p
; 0 ≤ p ≤ 1.

Problem 1. Find the maximum and minimum values of the function sin x+ cos x.

Solution

The power mean inequality states that for real positive quantities a, b and p ≥ 1,

a p + b p

2
≥

(a+ b
2

)p
.

Letting a = sin x and b = cos x and p = 2, we get

sin2 x+ cos2 x
2

≥
( sin x+ cos x

2

)2
⇒ 1

2
≥

( sin x+ cos x
2

)2

⇒ 2 ≥ (sin x+ cos x)2 =

{
sin x+ cos x ≥ −

√
2

sin x+ cos x ≤
√
2

∴
√
2 is the maximum value of sin x+ cos x and −

√
2 is the minimum value of sin x+ cos x.



105Azim Premji University At Right Angles, November 2023

The above problem is given as an exercise in a chapter of class 12 entitled as “Application of
Derivatives” [1].

Problem 2. For a, n ≥ 1, find the maximum value of n
√
sin ax+ n

√
cos ax.

(Note: This is meant to be done without using calculus.)

Solution

The power mean inequality states for real quantities u, v and p ≥ 1,

u1/p + v1/p

2
≤

(u+ v
2

)1/p
.

Letting u = sin2 ax, v = cos2 ax and p = 2n gives

(
sin2 ax

)1/2n
+
(
cos2 ax

)1/2n
2

≤
(
sin2 ax+ cos2 ax

2

)1/2n

,

hence: n
√
sin ax+ n

√
cos ax ≤ 2

(1
2

) 1
2n = 21−1/2n.

Hence the maximum value of the function is 21−1/2n.

The next problem was proposed by Jose L.D-Barrero [2]

Problem 3. Let a, b, c, d be four positive real numbers. Find the minimum value of

4
√
a+ 4

√
b+ 4

√
c+ 4

√
d

4
√
a+ b+ c+ d

.

Solution

From the power mean inequality:

4
√
a+ 4

√
b+ 4

√
c+ 4

√
d

4
≤

(a+ b+ c+ d
4

)1
4 ,

⇒
4
√
a+ 4

√
b+ 4

√
c+ 4

√
d

4
√
a+ b+ c+ d

≤ 4
(1
4

)1
4 = 2

√
2

Thus, the maximum value of
4
√
a+ 4

√
b+ 4

√
c+ 4

√
d

4
√
a+ b+ c+ d

is 2
√
2 which is attained when a = b = c = d.
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