Maxima and Minima using the Power Mean

 InequalityTOYESH PRAKASH SHARMA \& ETISHA SHARMA

The power mean inequality states the following:
For positive quantities $a_{1}, a_{2}, \cdots, a_{n}$ and $p \geq 1$,

$$
\frac{a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p}}{n} \geq\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)^{p} .
$$

For $0 \leq p \leq 1$, inequality reverses.

Proof

We know that for $p \geq 1, f(x)=x^{p}$ is convex; the graph has the following appearance (Figure 1):

Figure 1
From Figure 1 we have

$$
\begin{aligned}
O B & \geq O A, \\
\Rightarrow \frac{f(a)+f(b)}{2} & \geq f\left(\frac{a+b}{2}\right) .
\end{aligned}
$$

Here $f(a)=a^{p}, f(b)=b^{p}$ and $f\left(\frac{a+b}{2}\right)=\left(\frac{a+b}{2}\right)^{p}$. Hence

$$
\frac{a^{p}+b^{p}}{2} \geq\left(\frac{a+b}{2}\right)^{p} .
$$

This is the power mean inequality for two variables. Now let $a=\frac{a_{1}+a_{2}}{2}$ and $b=\frac{b_{1}+b_{2}}{2}$. Then

$$
\frac{\left(\frac{a_{1}+a_{2}}{2}\right)^{p}+\left(\frac{b_{1}+b_{2}}{2}\right)^{p}}{2} \geq\left(\frac{\frac{a_{1}+a_{2}}{2}+\frac{b_{1}+b_{2}}{2}}{2}\right)^{p}
$$

Using the power mean inequality for $\left(\frac{a_{1}+a_{2}}{2}\right)^{p}$ and $\left(\frac{b_{1}+b_{2}}{2}\right)^{p}$ we get:

$$
\frac{\frac{a_{1}^{p}+a_{2}^{p}}{2}+\frac{b_{1}^{p}+b_{2}^{p}}{2}}{2} \geq \frac{\left(\frac{a_{1}+a_{2}}{2}\right)^{p}+\left(\frac{b_{1}+b_{2}}{2}\right)^{p}}{2}
$$

So,

$$
\begin{aligned}
& \frac{\frac{a_{1}^{p}+a_{2}^{p}}{2}+\frac{b_{1}^{p}+b_{2}^{p}}{2}}{2} \geq\left(\frac{\frac{a_{1}+a_{2}}{2}+\frac{b_{1}+b_{2}}{2}}{2}\right)^{p}, \\
\Rightarrow & \frac{a_{1}^{p}+a_{2}^{p}+b_{1}^{p}+b_{2}^{p}}{4} \geq\left(\frac{a_{1}+a_{2}+b_{1}+b_{2}}{4}\right)^{p} .
\end{aligned}
$$

This is power mean inequality for four variables. Similarly for n quantities we have:

$$
\frac{a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p}}{n} \geq\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)^{p} ; p \geq 1 .
$$

For $0 \leq p \leq 1$ the same function i.e., $f(x)=x^{p}$ is concave function, so $\frac{f(a)+f(b)}{2} \leq f\left(\frac{a+b}{2}\right)$ and

$$
\frac{a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p}}{n} \geq\left(\frac{a_{1}+a_{2}+\cdots+a_{n}}{n}\right)^{p} ; 0 \leq p \leq 1 .
$$

Problem 1. Find the maximum and minimum values of the function $\sin x+\cos x$.

Solution

The power mean inequality states that for real positive quantities a, b and $p \geq 1$,

$$
\frac{a^{p}+b^{p}}{2} \geq\left(\frac{a+b}{2}\right)^{p}
$$

Letting $a=\sin x$ and $b=\cos x$ and $p=2$, we get

$$
\begin{aligned}
\frac{\sin ^{2} x+\cos ^{2} x}{2} \geq\left(\frac{\sin x+\cos x}{2}\right)^{2} & \Rightarrow \frac{1}{2} \geq\left(\frac{\sin x+\cos x}{2}\right)^{2} \\
\Rightarrow 2 \geq(\sin x+\cos x)^{2}= & \left\{\begin{array}{l}
\sin x+\cos x \geq-\sqrt{2} \\
\sin x+\cos x \leq \sqrt{2}
\end{array}\right.
\end{aligned}
$$

$\therefore \sqrt{2}$ is the maximum value of $\sin x+\cos x$ and $-\sqrt{2}$ is the minimum value of $\sin x+\cos x$.

The above problem is given as an exercise in a chapter of class 12 entitled as "Application of Derivatives" [1].

Problem 2. For $a, n \geq 1$, find the maximum value of $\sqrt[n]{\sin a x}+\sqrt[n]{\cos a x}$.
(Note: This is meant to be done without using calculus.)

Solution

The power mean inequality states for real quantities u, v and $p \geq 1$,

$$
\frac{u^{1 / p}+v^{1 / \mathrm{p}}}{2} \leq\left(\frac{u+v}{2}\right)^{1 / \mathrm{p}}
$$

Letting $u=\sin ^{2} a x, v=\cos ^{2} a x$ and $p=2 n$ gives

$$
\begin{aligned}
& \frac{\left(\sin ^{2} a x\right)^{1 / 2 n}+\left(\cos ^{2} a x\right)^{1 / 2 n}}{2} \leq\left(\frac{\sin ^{2} a x+\cos ^{2} a x}{2}\right)^{1 / 2 n} \\
& \text { hence: } \sqrt[n]{\sin a x}+\sqrt[n]{\cos a x} \leq 2\left(\frac{1}{2}\right)^{\frac{1}{2 n}}=2^{1-1 / 2 n}
\end{aligned}
$$

Hence the maximum value of the function is $2^{1-1 / 2 n}$.
The next problem was proposed by Jose L.D-Barrero [2]
Problem 3. Let a, b, c, d be four positive real numbers. Find the minimum value of

$$
\frac{\sqrt[4]{a}+\sqrt[4]{b}+\sqrt[4]{c}+\sqrt[4]{d}}{\sqrt[4]{a+b+c+d}}
$$

Solution

From the power mean inequality:

$$
\begin{aligned}
& \frac{\sqrt[4]{a}+\sqrt[4]{b}+\sqrt[4]{c}+\sqrt[4]{d}}{4} \leq\left(\frac{a+b+c+d}{4}\right)^{\frac{1}{4}} \\
\Rightarrow & \frac{\sqrt[4]{a}+\sqrt[4]{b}+\sqrt[4]{c}+\sqrt[4]{d}}{\sqrt[4]{a+b+c+d}} \leq 4\left(\frac{1}{4}\right)^{\frac{1}{4}}=2 \sqrt{2}
\end{aligned}
$$

Thus, the maximum value of $\frac{\sqrt[4]{a}+\sqrt[4]{b}+\sqrt[4]{c}+\sqrt[4]{d}}{\sqrt[4]{a+b+c+d}}$ is $2 \sqrt{2}$ which is attained when $a=b=c=d$.

References

1. Problem 3 (iii), Exercise 6.5, Chapter 6, "Applications of Derivatives" in Textbook of mathematics Class-12, NCERT, p. 232. ISBN-978-8174506290.
2. Jose L.D-Barrero, Problem 857, The Problem Corner, The Pentagon, Vol. 80 No. 1 Fall 2020. P. 29.

TOYESH PRAKASH SHARMA has been interested in science, mathematics, and literature since high school. He has contributed mathematics articles to magazines such as Mathematical Gazette, Crux Mathematicorum, Parabola, AMJ, ISROSET, SSMJ, Pentagon, Octagon, La Gaceta de la RSME, At Right Angles, Fibonacci Quarterly, Mathematical Reflections, Irish Mathematical Society, Indian Mathematical Society, and Mathematical Student. He has also written two books for high school students, "Problems on Trigonometry" and "Problems on Surds." Currently he is doing his B Sc in Physics and Mathematics from Agra College, Agra, India. He may be contacted at toyeshprakash@gmail.com.

ETISHA SHARMA is interested in Mathematics, Computer and Drawing. She completed her schooling from Gayatri Public School, Agra. Currently she is doing her B Sc in Mathematics, Physics and Chemistry from Agra College, Agra, India. She may be contacted at etisha 20020830 gmail.com.

