## A Conjecture equivalent to the Goldbach Conjecture, and some Consequences

K SASIKUMAR

The Goldbach conjecture is one of the oldest and best-known unsolved problems in Number Theory. It states the following:

Conjecture 1 (Goldbach). Every even natural number greater than 2 can be written as the sum of two prime numbers.

For example: $6=3+3,8=5+3,10=5+5, \ldots$, $2022=1009+1013, \ldots$.

It was conjectured in the year 1742 by Christian Goldbach.
Closely related to this conjecture is the Odd Goldbach
Conjecture (or the 3-primes problem):
Conjecture 2 (Odd Goldbach Conjecture). Every odd integer greater than 5 can be written as the sum of 3 primes.

For example: $7=2+2+3,9=3+3+3$, $11=3+3+5, \ldots$.

It is easy to see that the Goldbach Conjecture implies the Odd Goldbach Conjecture.

Proof. Consider an odd integer $n \geq 7$. We must show that it can be written as the sum of 3 primes. Consider the even number $n-3$. Since $n-3 \geq 4$, the Goldbach Conjecture (assumed to be true) can be applied. Hence there exist primes $p$ and $q$ such that $n-3=p+q$. This yields $n=3+p+q$. We have thus written $n$ as a sum of 3 primes.
Since the Goldbach Conjecture implies the Odd Goldbach Conjecture, we refer to the Odd Goldbach Conjecture as the Weak Goldbach Conjecture.
Here is another easy consequence of the Goldbach Conjecture:
Conjecture 3. Any square number $n>4$ can be written as the sum of 3 prime numbers.
For example: $16=2+7+7,36=2+11+23, \ldots$
Proof. Consider a square number $n$. We subdivide the proof into two parts.
Case (i) $n$ is an odd square number greater than 4 . In this case, by the previous claim $n$ can be written as the sum of 3 primes.
Case (ii) $n$ is an even square number greater than 4 . Let $n=4 m^{2}$ where $m$ is a positive integer greater than 1 . Then $n-2=4 m^{2}-2$ is even and greater than or equal to 4 . Therefore, by the Goldbach Conjecture, there exist primes $p_{1}$ and $p_{2}$ such that $n-2=p_{1}+p_{2}$ or $n=2+p_{1}+p_{2}$. We have thus written $n$ as the sum of 3 primes.

We conclude that if the Goldbach conjecture is true, then any square number greater than 4 can be written as the sum of 3 primes.
We now offer a new conjecture which is equivalent to the Goldbach conjecture.
Conjecture 4 (Golden Conjecture; Sasikumar K). For any natural number $n>1$, there exist prime numbers $p$ and $q$ such that $n^{2}-p q$ is a square.
For example: (a) For $n=4$, we may take $(p, q)=(3,5)$. (b) For $n=6$, we may take $(p, q)=(5,7)$. (c) For $n=9$, we may take $(p, q)=(5,13)$.
Theorem 1. The Golden Conjecture and the Goldbach Conjecture are equivalent to each other.
Proof. We shall first show that Goldbach Conjecture $\Longrightarrow$ Golden Conjecture. So let us suppose that the Goldbach Conjecture is true. Let $n$ be a positive integer greater than 1 . Then there exist prime numbers $p$ and $q$ such that $2 n=p+q$.
Now consider the quadratic equation $x^{2}-2 n x+p q=0$, i.e.,

$$
x^{2}-(p+q) x+p q=0
$$

The roots of this equation are clearly the integers $p$ and $q$. As the roots are integers, the discriminant must be a square, which means that $4 n^{2}-4 p q$ is a square. Hence $n^{2}-p q$ is a square, which proves the Golden Conjecture.
Next we must show that Golden Conjecture $\Longrightarrow$ Goldbach Conjecture. So let us suppose that the Golden Conjecture is true. Let $m \geq 4$ be an even integer. Then $m=2 n$ where $n>1$ is an integer.

By the Golden Conjecture, there exist prime numbers $p$ and $q$ (with, say, $p \geq q$ ) such that $n^{2}-p q$ is a square, say $n^{2}-p q=k^{2}$. We naturally have $0 \leq k<n$.

Consider the quadratic equation $x^{2}-2 n x+p q=0$. Its discriminant is $4 n^{2}-4 p q=4 k^{2}$ which is a square, so the equation has integer solutions $n+k$ and $n-k$. Let

$$
u=n+k=n+\sqrt{n^{2}-p q}, \quad v=n-k=n-\sqrt{n^{2}-p q} .
$$

Note that $u+v=2 n$ and $u v=p q$. Also, $u>1\left(\right.$ since $\left.n^{2}-p q \geq 0\right)$.
We shall show that $v>1$ too. Since $v>0$, we have $v \geq 1$. So it is sufficient if we prove that $v \neq 1$.
Suppose that $v=1$. Then $u=p q$, hence $p q+1=2 n$, so $n=\frac{1}{2}(p q+1)$. Therefore

$$
\begin{aligned}
\left(\frac{p q+1}{2}\right)^{2}-p q & =k^{2}, \\
\therefore(p q-1)^{2} & =4 k^{2}, \\
\therefore(p q+2 k-1)(p q-2 k-1) & =0 .
\end{aligned}
$$

Therefore either $p q=-2 k+1$ or $p q=2 k+1$. Both the possibilities imply that $p q$ is odd. But this contradicts the statement made earlier that $p q+1=2 n$, an even number.
We conclude that the Golden Conjecture implies the Goldbach Conjecture. Therefore, the Golden Conjecture and the Goldbach Conjecture are equivalent to one another.

Conjecture 5 (Maillet). Every even positive integer can be expressed as the difference of two primes.
For example: $2=5-3,6=11-5,8=11-3,10=13-3,12=17-5, \ldots$
A very much stronger form of the above conjecture is the following.
Conjecture 6 (de Polignac). Every even number can be expressed as the difference of two consecutive primes in infinitely many ways.

For example: $4=11-7=41-37=83-79=101-97=\cdots$. Conjecture 6 obviously implies Conjecture 5.

It is remarkable that all these conjectures continue to remain open despite enormous research efforts to prove or disprove them!

## References

1. Wikipedia, "Goldbach's conjecture." From https://en.wikipedia.org/wiki/Goldbach\'s_conjecture.
2. Hosch, William L. "Goldbach conjecture." Encyclopedia Britannica, https://www.britannica.com/science/Goldbach-conjecture.
3. Weisstein, Eric W. "Goldbach Conjecture." From MathWorld-A Wolfram Web Resource. https://mathworld.wolfram.com/GoldbachConjecture.html.


SASIKUMAR K is presently working as a PG Teacher in Mathematics at Jawahar Navodaya Vidyalaya, North Goa. He completed his M Phil under the guidance of Dr.K.S.S. Nambooripad. Earlier, he worked as a maths Olympiad trainer for students of Navodaya Vidyalaya Samiti in Hyderabad. He has research interests in Real Analysis and Commutative Algebra. He may be contacted at 112358.ganitham@gmail.com.

