A Conjecture equivalent to the Goldbach Conjecture, and some Consequences

K SASIKUMAR

he *Goldbach conjecture* is one of the oldest and best-known unsolved problems in Number Theory. It states the following:

Conjecture 1 (Goldbach). *Every even natural number greater than 2 can be written as the sum of two prime numbers.*

For example: 6 = 3 + 3, 8 = 5 + 3, 10 = 5 + 5, ..., 2022 = 1009 + 1013,

It was conjectured in the year 1742 by Christian Goldbach.

Closely related to this conjecture is the *Odd Goldbach Conjecture* (or the 3-primes problem):

Conjecture 2 (Odd Goldbach Conjecture). *Every odd integer greater than* 5 *can be written as the sum of* 3 *primes.*

For example: 7 = 2 + 2 + 3, 9 = 3 + 3 + 3, 11 = 3 + 3 + 5,

It is easy to see that the Goldbach Conjecture implies the Odd Goldbach Conjecture.

Keywords: Goldbach conjecture, Weak Goldbach Conjecture, Odd Goldbach Conjecture, Maillet Conjecture, prime number

Proof. Consider an odd integer $n \ge 7$. We must show that it can be written as the sum of 3 primes. Consider the even number n - 3. Since $n - 3 \ge 4$, the Goldbach Conjecture (assumed to be true) can be applied. Hence there exist primes p and q such that n - 3 = p + q. This yields n = 3 + p + q. We have thus written n as a sum of 3 primes.

Since the Goldbach Conjecture implies the Odd Goldbach Conjecture, we refer to the Odd Goldbach Conjecture as the *Weak Goldbach Conjecture*.

Here is another easy consequence of the Goldbach Conjecture:

Conjecture 3. Any square number n > 4 can be written as the sum of 3 prime numbers.

For example: 16 = 2 + 7 + 7, 36 = 2 + 11 + 23, ...

Proof. Consider a square number *n*. We subdivide the proof into two parts.

- Case (i) n is an odd square number greater than 4. In this case, by the previous claim n can be written as the sum of 3 primes.
- Case (ii) *n* is an even square number greater than 4. Let $n = 4m^2$ where *m* is a positive integer greater than 1. Then $n 2 = 4m^2 2$ is even and greater than or equal to 4. Therefore, by the Goldbach Conjecture, there exist primes p_1 and p_2 such that $n 2 = p_1 + p_2$ or $n = 2 + p_1 + p_2$. We have thus written *n* as the sum of 3 primes.

We conclude that if the Goldbach conjecture is true, then any square number greater than 4 can be written as the sum of 3 primes. \Box

We now offer a new conjecture which is equivalent to the Goldbach conjecture.

Conjecture 4 (Golden Conjecture; Sasikumar K). For any natural number n > 1, there exist prime numbers p and q such that $n^2 - pq$ is a square.

For example: (a) For n = 4, we may take (p, q) = (3, 5). (b) For n = 6, we may take (p, q) = (5, 7). (c) For n = 9, we may take (p, q) = (5, 13).

Theorem 1. The Golden Conjecture and the Goldbach Conjecture are equivalent to each other.

Proof. We shall first show that Goldbach Conjecture \implies Golden Conjecture. So let us suppose that the Goldbach Conjecture is true. Let *n* be a positive integer greater than 1. Then there exist prime numbers *p* and *q* such that 2n = p + q.

Now consider the quadratic equation $x^2 - 2nx + pq = 0$, i.e.,

$$x^2 - (p+q)x + pq = 0.$$

The roots of this equation are clearly the integers p and q. As the roots are integers, the discriminant must be a square, which means that $4n^2 - 4pq$ is a square. Hence $n^2 - pq$ is a square, which proves the Golden Conjecture.

Next we must show that Golden Conjecture \implies Goldbach Conjecture. So let us suppose that the Golden Conjecture is true. Let $m \ge 4$ be an even integer. Then m = 2n where n > 1 is an integer.

By the Golden Conjecture, there exist prime numbers p and q (with, say, $p \ge q$) such that $n^2 - pq$ is a square, say $n^2 - pq = k^2$. We naturally have $0 \le k < n$.

Consider the quadratic equation $x^2 - 2nx + pq = 0$. Its discriminant is $4n^2 - 4pq = 4k^2$ which is a square, so the equation has integer solutions n + k and n - k. Let

$$u = n + k = n + \sqrt{n^2 - pq}, \qquad v = n - k = n - \sqrt{n^2 - pq}.$$

Note that u + v = 2n and uv = pq. Also, u > 1 (since $n^2 - pq \ge 0$).

We shall show that v > 1 too. Since v > 0, we have $v \ge 1$. So it is sufficient if we prove that $v \ne 1$. Suppose that v = 1. Then u = pq, hence pq + 1 = 2n, so $n = \frac{1}{2}(pq + 1)$. Therefore

$$\left(\frac{pq+1}{2}\right)^2 - pq = k^2,$$

$$\therefore (pq-1)^2 = 4k^2,$$

$$\therefore (pq+2k-1)(pq-2k-1) = 0.$$

Therefore either pq = -2k + 1 or pq = 2k + 1. Both the possibilities imply that pq is odd. But this contradicts the statement made earlier that pq + 1 = 2n, an even number.

We conclude that the Golden Conjecture implies the Goldbach Conjecture. Therefore, the Golden Conjecture and the Goldbach Conjecture are equivalent to one another.

Conjecture 5 (Maillet). *Every even positive integer can be expressed as the difference of two primes.* For example: 2 = 5 - 3, 6 = 11 - 5, 8 = 11 - 3, 10 = 13 - 3, 12 = 17 - 5,

A very much stronger form of the above conjecture is the following.

Conjecture 6 (de Polignac). Every even number can be expressed as the difference of two consecutive primes in infinitely many ways.

For example: $4 = 11 - 7 = 41 - 37 = 83 - 79 = 101 - 97 = \cdots$. Conjecture 6 obviously implies Conjecture 5.

It is remarkable that all these conjectures continue to remain open despite enormous research efforts to prove or disprove them!

References

- 1. Wikipedia, "Goldbach's conjecture." From https://en.wikipedia.org/wiki/Goldbach%27s_conjecture.
- 2. Hosch, William L. "Goldbach conjecture." Encyclopedia Britannica, https://www.britannica.com/science/Goldbach-conjecture.
- 3. Weisstein, Eric W. "Goldbach Conjecture." From MathWorld–A Wolfram Web Resource. https://mathworld.wolfram.com/GoldbachConjecture.html.

SASIKUMAR K is presently working as a PG Teacher in Mathematics at Jawahar Navodaya Vidyalaya, North Goa. He completed his M Phil under the guidance of Dr.K.S.S. Nambooripad. Earlier, he worked as a maths Olympiad trainer for students of Navodaya Vidyalaya Samiti in Hyderabad. He has research interests in Real Analysis and Commutative Algebra. He may be contacted at 112358.ganitham@gmail.com.