Menelaus's Theorem

ANKUSH KUMAR

 PARCHAMenelaus' theorem is an extremely important result in higher Euclidean geometry. We offer a proof of the theorem here using the sine rule from trigonometry.

Menelaus's Theorem

In $\triangle A B C$ a transversal line crosses the side lines $C A, A B$ and $B C$ at points Q, P and M, respectively. Then we have the following equality:

$$
\frac{B M}{M C} \cdot \frac{C Q}{Q A} \cdot \frac{A P}{P B}=1 .
$$

Proof

Apply the sine law in $\triangle A P Q$:

$$
\begin{aligned}
\frac{\sin \theta_{1}}{P Q} & =\frac{\sin \theta_{4}}{A P}=\frac{\sin \left(180^{\circ}-\theta_{1}-\theta_{4}\right)}{Q A}, \\
\text { therefore } \frac{\sin \theta_{4}}{A P} & =\frac{\sin \left(\theta_{1}+\theta_{4}\right)}{Q A} \Longrightarrow \frac{A P}{Q A}=\frac{\sin \theta_{4}}{\sin \left(\theta_{1}+\theta_{4}\right)} .
\end{aligned}
$$

Keywords: Euclidean geometry, Menelaus, proof, sine rule.

Again, applying the sine law in $\triangle Q C M$:

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{\sin \theta_{3}}{Q M} & =\frac{\sin \theta_{4}}{C M}=\frac{\sin \left(180^{\circ}+\theta_{3}-\theta_{4}\right)}{C Q} \\
\text { therefore } \frac{\sin \theta_{4}}{C M} & =\frac{\sin \left(\theta_{3}-\theta_{4}\right)}{C Q} \Longrightarrow \frac{C Q}{C M}=\frac{\sin \left(\theta_{3}-\theta_{4}\right)}{\sin \theta_{4}} .
\end{aligned} .
\end{aligned}
$$

Again, applying the sine law in $\triangle P B M$:

$$
\begin{aligned}
& \frac{\sin \left(180^{\circ}+\theta_{3}-\theta_{4}\right)}{P B}=\frac{\sin \left(\theta_{1}+\theta_{4}\right)}{B M}=\frac{\sin \theta_{2},}{P M} \\
& \text { therefore } \frac{\sin \left(\theta_{3}-\theta_{4}\right)}{P B}=\frac{\sin \left(\theta_{1}+\theta_{4}\right)}{B M} \Longrightarrow \frac{B M}{P B}=\frac{\sin \left(\theta_{1}+\theta_{4}\right)}{\sin \left(\theta_{3}-\theta_{4}\right)} \text {. }
\end{aligned}
$$

Multiplying the corresponding sides of the three equalities, we get:

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{A P}{Q A} \cdot \frac{C Q}{C M} \cdot \frac{B M}{P B} & =\frac{\sin \theta_{4}}{\sin \left(\theta_{1}+\theta_{4}\right)} \cdot \frac{\sin \left(\theta_{3}-\theta_{4}\right)}{\sin \theta_{4}} \cdot \frac{\sin \left(\theta_{1}+\theta_{4}\right)}{\sin \left(\theta_{3}-\theta_{4}\right)} \\
\text { therefore } \frac{B M}{M C} \cdot \frac{C Q}{Q A} \cdot \frac{A P}{P B} & =1
\end{aligned} \text {. }
\end{aligned}
$$

Corollary

$$
\left(1+\frac{A P}{P B}\right)\left(1+\frac{C M}{C B}\right)=\frac{Q M}{Q P} \cdot \frac{Q A}{Q C}
$$

Proof

For $\triangle M B P$ with AQC as transversal, Menelaus's Theorem can be written as

$$
\frac{B A}{A P} \cdot \frac{P Q}{Q M} \cdot \frac{M C}{C B}=1
$$

Multiplying this with the previous result, we get:

$$
\begin{aligned}
\frac{B A}{A P} \cdot \frac{P Q}{Q M} \cdot \frac{M C}{C B} \cdot \frac{B M}{M C} \cdot \frac{C Q}{Q A} \cdot \frac{A P}{P B} & =1 \\
\text { therefore } \frac{B A}{P B} \cdot \frac{B M}{C B} & =\frac{Q M}{Q P} \cdot \frac{Q A}{Q C} \Longrightarrow \frac{B P+P A}{P B} \cdot \frac{B C+C M}{C B}=\frac{Q M}{Q P} \cdot \frac{Q A}{Q C} .
\end{aligned}
$$

Or:

$$
\left(1+\frac{A P}{P B}\right)\left(1+\frac{C M}{C B}\right)=\frac{Q M}{Q P} \cdot \frac{Q A}{Q C}
$$

ANKUSH KUMAR PARCHA is currently studying BSc Physics Honours (second year) at Indira Gandhi National Open University (IGNOU), New Delhi. He has a deep interest in doing research in Physics and Mathematics. He has contributed many articles, problems, and solutions to magazines such as Mathematical Gazette, AMJ, ISROSET, SSMJ, Pentagon, Octagon, At Right Angles and Mathematical Reflections. He may be contacted at ankushparcha11@gmail.com.

