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Introduction
The following question (see Figure 1) appeared in the
Kishore Vaigyanik Protsahan Yojana (KVPY) 2017 SX/SB
question paper [1].

Figure 1. Question 17 in KVPY 2017 for SX/SB stream.
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One common approach to solving this problem would be to set θ = π/2 so that x (θ) = 0 and y (θ) = 1.
This eliminates options (C) and (D). To choose between (A) and (B) we could make another “intelligent”
guess and set θ = π/4 so that x (θ) = 1/

√
2 = y (θ). This eliminates option (B) since it does not have

any point on the line y = x other than (0, 0). End of problem.

Or is it? Why would anyone come up with equations or graphs like this? Do they describe any real
phenomenon or are they purely mathematical constructs whose sole application is as examination
questions? Here is an account of how we were able to relate this particular question to a real-world
phenomenon. This not only helped us answer the KVPY question (well, almost!), but also allowed us to
understand several properties of these curves and equations through the behaviour of the corresponding
physical system and vice-versa. We used the Desmos graphing calculator [3] to study the graphs produced.
See the Appendix for directions on using this software.

Apparent Planetary Motion
Figure 2 shows a simplified heliocentric model for planetary motion: all planetary orbits are circular and
all planets start at zero phase in their respective orbits.

Figure 2. Simplified heliocentric planetary model. All planets (P1, P2, P3) have circular orbits
centred at the sun. At time = 0, all planets are located on the x-axis (i.e., they have “zero phase”).

As shown in Figure 3, if the orbital radii of observed planet (P) and the Earth (E) be RP and RE
respectively, then the coordinates of the observed planet in Earth’s frame of reference are:

xPE = xP − xE = RP cos θP − RE cos θE
yPE = yP − yE = RP sin θP − RE sin θE

If the planet P completes one full revolution (2π radians) around the sun in time TP, then in time t, it
would have covered an angle θP = 2πt/TP. We say that TP is the orbital period of the planet P. Similarly,
if the orbital period of Earth E is TE, then in the same time t, it will have covered an angle θE = 2πt/TE.
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Figure 3. (a) The coordinates of planets E and P with the Sun as the
origin. (b) The coordinates of planet P with planet E as the origin.

So, we can rewrite:

xPE = xP − xE = RP cos (2πt/TP)− RE cos (2πt/TE)

yPE = yP − yE = RP sin (2πt/TP)− RE sin (2πt/TE)

Note that after a period T = LCM (TP,TE), both planets will have completed an integer number of
revolutions and will be back in their initial positions on their respective orbits. A plot of (xPE, yPE) will
therefore, also return to its starting point after this time and then start repeating itself beyond this time.

Finally, we also note that in the above equations, θ increases with t for all planets. The implication is that
all planets orbit the sun in the same direction. This is indeed true for our solar system.

Mars and Venus
If the orbital radii of Earth, Mars and Venus be respectively RE, RM and RV and their orbital periods
respectively be TE, TM and TV, then RM ≈ 1.5RE, RV ≈ 0.7RE, TM ≈ 1.9TE, and TV ≈ 0.6TE [2, pp.
388–389]. Using these values in the above equations, we plot the orbit of Mars for LCM (1.9, 1) = 19
years and the orbit of Venus for LCM (0.6, 1) = 3 years as seen from Earth. Figure 4 shows the results
obtained using the Desmos online graphing calculator [3]. The small loops highlighted in the insets
represent periods of ‘apparent retrograde motion’ where the observed planet seems to reverse its ‘usual’
direction of motion against the backdrop of the distant stars.

Correlating the Math with the Physical System
We define the planets to be at ‘perigee’ when they are closest to each other and at ‘apogee’ when they are
furthest from each other. As shown in Figure 5, the ‘perigee’ distance between the two planets P and E will
be RP − RE and the apogee distance between them will be RP + RE.

Indeed, we can confirm from Figure 4 that, the minimum (perigee) distance between the Earth (at origin)
and the observed planet (on the curve) is |RP − RE| (which is 0.5 for Mars and 0.3 for Venus) and the
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Figure 4. Apparent motion of Mars and Venus observed from the Earth in our model.

Figure 5. (a) Perigee: when the planets are closest to one another.
(b) Apogee: when the planets are furthest from one another.

maximum (apogee) distance is RP + RE (which is 2.5 for Mars and 1.7 for Venus). We now analyze some
more features of the graphs obtained in Figure 4.

Retrograde loops
Let us define P to be an inner planet if RP < RE and an outer planet if RP > RE. (The usual nomenclature
is ‘inferior’ and ‘superior’. Note that though Mars is to be treated as an “outer” planet for this article, it is
otherwise considered an inner planet as it is inside the asteroid belt.) At equally spaced times t1, t2 and t3,
let the Earth E be at locations E1, E2 and E3 and the observed outer planet P be at locations P1, P2 and P3
respectively, with both E and P orbiting the sun in the same (anticlockwise) direction. Figure 6 shows
three possible configurations for the planets’ positions at t1, t2 and t3 as case A, case B and case C.



78 Azim Premji University At Right Angles, March 2023

Figure 6. Apparent retrograde motion occurs when planets are positioned as in case C.

In case A and case B, the apparent motion of P as seen from E seems to be anticlockwise. In case C
however, P appears to have reversed its motion and moves clockwise when seen from E. Such retrograde
motion is only possible at the perigee if some additional constraints are met as discussed below.

With reference to the inset for Case C in Figure 6, if the lines E3N and E1N′ be parallel to the line OE2P2,
then apparent retrograde motion will only occur if P3 lies between P2 and N and by symmetry P1 lies
between P2 and N′. If P were to move faster so that it reaches position P′

3 between N and M at t3, then no
retrograde motion would be seen. In particular, if P were to reach position P′′

3 beyond M at t3, it would
mean that the orbital period of P is less than that of the Earth. Thus, for retrograde motion we want the
y-coordinate of P3 to be less than that of N or equivalently, E3, i.e., RP sin (2πt/TP) < RE sin (2πt/TE),
where t = t3 − t2. Since sin θ ≈ θ for small θ, we can write the condition for retrograde motion for at least
an infinitesimal time for outer planets as:

1 < RP/RE < TP/TE

A similar analysis yields the condition for retrograde motion for inner planets as 1 > RP/RE > TP/TE. By
symmetry, this analysis applies to all perigee locations.

All the planets in the solar system show retrograde motion because they satisfy these conditions as a
consequence of Kepler’s Law: T2

E/R
3
E = T2

P/R
3
P which in turn is a consequence of Newton’s theory of

Gravitation [2, pp. 388-389, p. 404].

If T = LCM(TP,TE), then the number of retrograde loops formed will depend on how many times the
outer planet gets lapped by the inner planet in time T. Thus, number of retrograde loops in the plot will
be |T/TE − T/TP|. These loops will be evenly distributed in the 360◦ angle around the Earth. This
explains why in Figure 4, the Mars plot has |19 − 10| = 9 retrograde loops at every 360◦/9 = 40◦, while
the Venus plot has |3 − 5| = 2 loops at every 360◦/2 = 180◦.
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Initial Phase
We assumed that both the Earth and the observed planet start in their orbits with zero initial phase. In this
scenario, as shown in Figure 7, we would expect at least one perigee to occur in the +x direction for outer
planets and along the −x direction for inner planets. These have been highlighted for Mars and Venus in
Figure 7. Since Venus has its two perigees separated by 180◦, its other perigee also ends up on the x-axis,
along the positive x-axis.

Figure 7. Initial positions are positions of perigee along the x-axis when all planets start with zero phase.

Now, let the initial phases of the Earth and the observed planet be ∅E and ∅P respectively, then the first
perigee location will be reached when 2πt

TP
+∅P =

2πt
TE

+∅E. For example, if Venus starts at phase 0 and
Earth starts at phase 90◦, then a perigee will occur when 2πt

0.6 = 2πt+ π/2, i.e., t = 3/8 and the phase for
both planets at this time is 225◦. The whole orbit of Venus as seen from Earth in this situation would then
appear to be rotated w.r.t. Figure 4 by this angle. This is borne out by Figure 8.

Figure 8. The graph is rotated in accordance with the relative initial phase of the planets.

Hypothetical planets
Figure 9 shows what would have happened in the hypothetical scenario where Mars and Venus orbit the
sun in a direction opposite to that of the Earth.
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Figure 9. Mars and Venus plots from Earth if orbiting in opposite direction to Earth.

The conditions for the formation of the retrograde motion loops remain the same, except that they are
now formed at the apogee. This causes the retrograde loops to face outward. The number of times the
planets are at the apogee in time T = LCM(TE,TP) in this case, is (T/TE + T/TP). Hence, Mars now
shows 19 + 10 = 29 loops of retrograde motion while Venus shows 3 + 5 = 8 such loops.

The KVPY Planets
Let us now turn back to the function given in the KVPY question. Ignoring the modulus operation (we
will come back to this later), we can rewrite [4]:

x (θ) = cos 4θ cos θ = 0.5 (cos 5θ + cos 3θ) = 0.5 (cos 5θ − cos (π − 3θ))
y (θ) = cos 4θ sin θ = 0.5 (sin 5θ − sin 3θ) = 0.5 (sin 5θ − sin (π − 3θ))

Relating this to our model of apparent planetary motion, we can now deduce:

1. The orbital radii of the two “planets” are same, therefore, the nearest distance between them will be
zero. All curves satisfy this since they pass through (0, 0).

2. While one planet’s motion is determined by +θ, the other’s changes as –θ, i.e., these planets are
orbiting in opposite directions. Therefore, the retrograde motion loops must face outward. This is
also satisfied by all the curves.

3. The number of retrograde motion loops should be (5 + 3) = 8. This eliminates options (B)
and (D).

4. Since the reference planet has initial phase π while the observed planet has initial phase 0, the
starting position must be an apogee position along the x-axis. This does not occur in (C). Thus, the
answer must be (A).

Can you now work out what the equations could be for the remaining curves?

What about the Modulus?
With the help of the DESMOS calculator, we plotted the graph for the functions with and without the
modulus operation for increasing ranges of θ. The results are shown in Figure 10.
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Figure 10. Difference caused by modulus operation.

The sequence in which the retrograde loops are produced is different in the two cases. Once θ has covered
its full period of 2π though, the graphs are indistinguishable. We wonder what physical system could
correspond to the equations with the modulus?

Conclusions
Our analysis of planetary motion helped us appreciate the KVPY question discussed in this article from a
completely different perspective. We wonder if other equations and graphs that we come across in puzzle
books and examinations are also related to some everyday physical phenomena. We believe an awareness
of such connections will hugely enrich our learning of both, the physical phenomena and its underlying
mathematics. In that context, here are a few more points to ponder as extensions of the discussion in this
article (ignore the modulus operation to begin with):

1. We said that the graph loops back to its starting point and then repeats after time
T = LCM (TP,TE). What is T if TP/TE is not rational? What happens to the graph in this case?

2. What if both planets start with the same but non-zero initial phase?

3. Given a function, can we predict the sequence in which the retrograde loops will be generated as θ
increases (see Figure 10)?

4. Can we predict how many “layers” of intersections the curve will have and the angles along which
these intersections will lie (see Figure 11)?

5. What if 1 < TP/TE < RP/RE for outer planets? Does the curve have concavities or is it fully
convex or does it depend on exactly how much RP/RE is greater than TP/TE?

Trivia: The Geometric Chuck is a mechanical instrument that generates the types of curves discussed in this
article [5]. Such curves are equivalent to the ancient (geocentric) epicycle model of the solar system which,
understandably, had good success in explaining the retrograde motion of planets [6].
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Figure 11. The graph for Mars intersects itself in 5 “layers” (marked by the 5 dots in blue and
green colours). The intersections exactly align along radial lines of two types: (a) going through

the centre of the retrograde loop and (b) going exactly between two neighbouring retrograde loops.

Appendix: Desmos graphing calculator
The Desmos online graphing calculator can be accessed at: https://www.desmos.com/calculator. The user
interface is quite intuitive. One can either directly type the equation to be plotted in the box provided or
use the inbuilt keyboard option. Settings are available to alter the appearance of the grid and of the plotted
curve. Extensive documentation and a broad compilation of example graphs can also be accessed from the
tool itself (see Figure A1).

In this article we have used the feature for plotting parametric curves. One can refer to the ‘Parametric:
Introduction’ example in the Desmos example list to get started. The parametric form allows us to express
the x and y coordinates as a function of the parameter t, i.e., x = f(t) and y = g(t). The coordinates of the
curve may then be entered as (f (t) , g (t)) in the box provided for the input equation. For example, the
straight line equation y = 3x can be plotted in parametric form as (t, 3t) as shown in Figure A2. The
default Desmos range of the parameter t is 0 ≤ t ≤ 1, which can be changed as per our needs.

For this article, we need the coordinates of, for example, Mars (M) with the Earth (E) as the origin. Since
both planets are assumed to start with the same (zero) phase, be in circular orbits with the sun at the center
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Figure A1. Desmos user interface.

Figure A2. Parametric form of equation y = 3x expressed as (t, 3t) with 0 ≤ t ≤ 1.

and revolve in the same direction, their coordinates, with the sun as the origin, at any time t, can be
represented as shown in Figure A3.

With TM and TE being respectively the orbital periods of Mars and Earth, both θM and θE can be
expressed in terms of time t. The coordinates of Mars w.r.t. Earth at any time t can then be written as:

xME = xM − xE = RM cos (2πt/TM)− RE cos (2πt/TE)

yME = yM − yE = RM sin (2πt/TM)− RE sin (2πt/TE)

Further, knowing that RM ≈ 1.5RE, we can put RE = 1 and RM = 1.5. Similarly, knowing that
TM ≈ 1.9TE, we can put TE = 1 and TM = 1.9. Thus, we can write the coordinates for Mars in Earth’s
frame of reference in Desmos as:

(1.5 cos (2πt/1.9)− cos (2πt) , 1.5 sin (2πt/1.9)− sin (2πt))
This generates the graph shown in Figure A4 since the range used for t is still set to the default. If we
extend this range from 0 to LCM (TM,TE) = 19, we will get the curve for Mars as shown in Figure 4.

Similarly, the curve for Venus (V) shown in Figure 4 is generated using the coordinates:

(0.7 cos (2πt/0.6)− cos (2πt) , 0.7 sin (2πt/0.6)− sin (2πt))
where t ranges from 0 to LCM (TV,TE) = 3.
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Figure A3. Coordinates of planets E and M with the Sun assumed to be at origin.

Figure A4. Plot of Mars w.r.t. Earth with default range for t.

To generate the curve for Figure 8, it was assumed that Earth had an initial phase of π/2. The coordinates
of Venus w.r.t. Earth are then given by:

(0.7 cos (2πt/0.6)− cos (2πt+ π/2) , 0.7 sin (2πt/0.6)− sin (2πt+ π/2))
For Figure 9, we have to assume that Mars and Venus revolve opposite to Earth’s direction, hence their θ
changes as −t while Earth’s changes with t. The coordinates for Mars and Venus w.r.t. Earth then
respectively become:

(1.5 cos (2π(−t)/1.9)− cos (2πt) , 1.5 sin (2π(−t)/1.9)− sin (2πt))
(0.7 cos (2π(−t)/0.6)− cos (2πt) , 0.7 sin (2π(−t)/0.6)− sin (2πt))

The coordinates and the parameter ranges used to generate Figure 10 have already been provided in the
main article (to enter them in Desmos, use t instead of θ).
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