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In this article we discuss a solution to a Number Theory
Problem, which was given in the 80th Eötvös-Kürschák
Competition, 1980 [1].

Problem. Let n > 1 be an odd integer. Prove that a
necessary and sufficient condition for the existence of
positive integers x and y satisfying

4
n
=

1
x
+

1
y

is that n has a prime divisor of the form 4k− 1.

Solution.We first prove that the given condition is
sufficient. (This is the easy part.)

Assume that n has a prime divisor of the form 4k− 1. Then
there exists a positive integer m such that

n = (4k− 1)m.

We now have:

4
n
=

4
(4k− 1)m

=
(4k− 1) + 1
k(4k− 1)m

=
1
km

+
1

k(4k− 1)m
.

Thus we can take x = km, y = k(4k− 1)m; they are positive
integers satisfying the given equation.

Next we prove that the condition is necessary.
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Assume that for the odd integer n > 1 there exist positive integers x and y such that

4
n
=

1
x
+

1
y
.

We shall prove that n has a prime divisor of the form 4k− 1.

Let gcd(x, y) = d. Then there exist positive integers u and v such that x = du and y = dv, and
gcd(u, v) = 1 (i.e., u, v are coprime).

Then from the equality

4
n
=

1
x
+

1
y

we get

n =
4xy
x+ y

=
4d(uv)
u+ v

. (1)

We now prove that gcd(uv, u+ v) = 1.

Let p be a prime factor of uv and u+ v. Since p is a divisor of uv, it must divide either u or v. Let us
suppose that p is a divisor of u. Since p is a divisor of u as well as u+ v, it must be that p is a divisor of v
too. But this contradicts our supposition that u and v are coprime. Likewise if p is a divisor of v. We
conclude that

gcd(uv, u+ v) = 1. (2)

From (1) we have,

n(u+ v) = 4d(uv). (3)

Therefore, 4 is a divisor of n(u+ v). Since n is odd we deduce that

4 is a divisor of u+ v. (4)

From (4) it follows that u, v are either both odd or both even. They cannot both be even as u, v are
coprime. Hence u, v are both odd.

Further, since 4 is a divisor of u+ v, it follows that one of u, v is of the form 4a− 1 while the other is of
the form 4b+ 1. From this we deduce that

uv ≡ −1(mod4). (5)

This implies that uv has a prime divisor p of the form 4k− 1. It follows from (3) that p divides n(u+ v).

But since gcd(uv, u+ v) = 1, it follows that p does not divide u+ v. From this it follows that p divides n.

We have thus shown that n has a prime divisor p of the form 4k− 1, as required. □

Another argument to prove that the given condition is necessary (contributed by the second author).
For this, we shall assume that all the prime factors of n are of the form 1(mod4). From this we proceed to
derive a contradiction.

Let d = gcd(x, y) so that x = du and y = dv where gcd(u, v) = 1.
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We have:

4xy = n(x+ y), ∴ 4xy = nd(u+ v), ∴ 4
( x
d

)
y = n(u+ v), (6)

so 4uy = n(u+ v). As gcd(n, 4) = 1, we get

u+ v ≡ 0(mod4). (7)

On the other hand, from 4uy = n(u+ v), it follows that u is a factor of n(u+ v).

Since gcd(u, u+ v) = 1, it follows that u is a factor of n.

Similarly, we conclude that v is a factor of n. So both u, v are factors of n.

By assumption, therefore, u ≡ 1(mod4) and v ≡ 1(mod4). From these we get

u+ v ≡ 2(mod4). (8)

This contradicts (7). We have found the desired contradiction.

It follows that n has a prime divisor of the form 4k− 1, as required . □
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