Products of Sums of All Co-Primes from 1 till Any Given Number

ANAND PRAKASH

We are familiar with the following problem: given a positive integer n, find the sum $g(n)$ of all the positive integers from 1 to n that are coprime to n.
The formula for the required sum is simple:

$$
g(n)= \begin{cases}1, & \text { for } n=1 \tag{1}\\ \frac{1}{2} \times n \times \Phi(n), & \text { for } n>1\end{cases}
$$

where $\Phi(n)$ is the Euler totient function (it counts the positive integers from 1 to n that are coprime to n). The reason for formula (1) should be clear: for $n>1$, if $1 \leq a<n$ and we have $\operatorname{gcd}(a, n)=1$, then we also have $1 \leq n-a<n$ and $\operatorname{gcd}(n-a, n)=1$. This means that the positive integers between 1 and n that are coprime to n can be paired with one another such that the sum of the numbers in each pair is n. Hence the stated result.

In this article, I explore the following problem:
Problem. Find the product $f(n)$ of all such sums up to a given positive integer n.

In other words, we want the formula for the following in terms of the prime factorization of n.

$$
\begin{equation*}
f(n):=\prod_{k=1}^{n} g(k) . \tag{2}
\end{equation*}
$$

[^0]Example. Let $n=10$. The sums of all the co-primes for $1,2,3,4,5,6,7,8,9,10$ are (respectively) 1,1 , $1+2,1+3,1+2+3+4,1+5,1+2+3+4+5+6,1+3+5+7,1+2+4+5+7+8$, $1+3+7+9$, i.e., $1,1,3,4,10,6,21,16,27,20$, respectively. Hence:

$$
\begin{aligned}
f(10) & =\text { product of the sums of the co-primes from } 1 \text { to } 10 \\
& =1 \times 1 \times 3 \times 4 \times 10 \times 6 \times 21 \times 16 \times 27 \times 20 \\
& =2^{10} \times 3^{6} \times 5^{2} \times 7
\end{aligned}
$$

It is easy to obtain $f(n)$ for small values of n. However, it takes too much time for large numbers. We seek a usable formula for $f(n)$.

Theorem. For $n \geq 9$ we have:

$$
\begin{equation*}
f(n)=\frac{1}{2^{n-1}} \times(n!)^{2} \times\left(\frac{\prod_{k=2}^{k=n} \prod_{p \mid k}(p-1)}{\prod_{k=2}^{k=n} \prod_{p \mid k} p}\right) \tag{3}
\end{equation*}
$$

Proof of theorem. We have $\Phi(1)=1$, and for $n>1$,

$$
\begin{equation*}
\Phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) \tag{4}
\end{equation*}
$$

Hence, from (1), for $n>1$:

$$
\begin{equation*}
g(n)=\frac{1}{2} \times n \times \Phi(n)=\frac{1}{2} \times n^{2} \times \prod_{\left.p\right|^{n}}\left(1-\frac{1}{p}\right) \tag{5}
\end{equation*}
$$

Hence:

$$
\begin{align*}
f(n) & =\prod_{k=1}^{k=n} g(k) \\
& =\prod_{k=2}^{k=n} \frac{1}{2} \times k^{2} \times \prod_{p \mid k}\left(1-\frac{1}{p}\right) \\
& =\frac{1}{2^{n-1}} \times(n!)^{2} \times \prod_{k=2}^{k=n} \prod_{p \mid k}\left(1-\frac{1}{p}\right) \\
& =\frac{1}{2^{n-1}} \times(n!)^{2} \times \frac{\prod_{k=2}^{k=n} \prod_{p \mid k}^{k=n}(p-1)}{\prod_{k=2} \prod_{p \mid k} p} \tag{6}
\end{align*}
$$

Using (6), we may compute the values of f. See Table 1 for a list of some values of the function.

n	$f(n)$
1	1
2	1
3	3
4	$2^{2} \times 3$
5	$2^{3} \times 3 \times 5$
6	$2^{4} \times 3 \times 5$
7	$2^{4} \times 3^{3} \times 5 \times 7$
8	$2^{8} \times 3^{3} \times 5 \times 7$
9	$2^{8} \times 3^{6} \times 5 \times 7$
10	$2^{10} \times 3^{6} \times 5^{2} \times 7$
11	$2^{10} \times 3^{6} \times 5^{3} \times 7 \times 11$
12	$2^{13} \times 3^{7} \times 5^{3} \times 7 \times 11$
13	$2^{14} \times 3^{8} \times 5^{3} \times 7 \times 11 \times 13$
14	$2^{15} \times 3^{9} \times 5^{3} \times 7^{2} \times 11 \times 13$
15	$2^{17} \times 3^{10} \times 5^{4} \times 7^{2} \times 11 \times 13$

Table 1. Values of $f(n)$ for $1 \leq n \leq 15$, expressed in terms of the primes $\leq n$
To find an explicit formula for f, we need to work out the power to which each prime $p \leq n$ occurs in the above quantity. We look at each term in (6) separately.
Let $p_{1}=2, p_{2}=3, p_{3}, \ldots, p_{s}$ be the primes not exceeding n. (So there are s prime not exceeding n.)

- For $q \in\left\{p_{1}, p_{2}, \ldots, p_{s}\right\}$, the power to which q divides $n!$ is

$$
\left\lfloor\frac{n}{q}\right\rfloor+\left\lfloor\frac{n}{q^{2}}\right\rfloor+\left\lfloor\frac{n}{q^{3}}\right\rfloor+\cdots
$$

This follows from Legendre's formula [1] which gives an expression for the exponent of the largest power of a prime q that divides $n!$.
Hence the power to which q divides $(n!)^{2}$ is

$$
\begin{equation*}
2\left\lfloor\frac{n}{q}\right\rfloor+2\left\lfloor\frac{n}{q^{2}}\right\rfloor+2\left\lfloor\frac{n}{q^{3}}\right\rfloor+\cdots . \tag{7}
\end{equation*}
$$

- Next, the power to which q divides $\prod_{k=1}^{k=n} \prod_{p \mid k} p$ is $\left\lfloor\frac{n}{q}\right\rfloor$.

To see why, we simply count the number of occurrences of q in the expression $\prod_{k=1}^{k=n} \prod_{p \mid k} p$.

- Hence, the power to which q divides $\frac{(n!)^{2}}{\prod_{k=1}^{k=n} \prod_{p \mid k} p}$ is

$$
\begin{equation*}
\left\lfloor\frac{n}{q}\right\rfloor+2\left\lfloor\frac{n}{q^{2}}\right\rfloor+2\left\lfloor\frac{n}{q^{3}}\right\rfloor+2\left\lfloor\frac{n}{q^{4}}\right\rfloor+\cdots . \tag{8}
\end{equation*}
$$

- Now we must compute the power to which an arbitrary prime number q divides the quantity

$$
\begin{equation*}
\prod_{k=1}^{k=n} \prod_{p \mid k}(p-1) \tag{9}
\end{equation*}
$$

Further investigation will have to be undertaken to give an explicit formula for (9). The formula may be somewhat complex.

References

1. Wikipedia, "Legendre's formula" from https://en.wikipedia.org/wiki/Legendre\'s_formula

ANAND PRAKASH runs a small garment shop at Kesariya village in the state of Bihar. He has a keen interest in number theory and recreational mathematics and has published many papers in international journals in these fields. He also has a deep interest in classical Indian music as well as cooking. In addition, he has written a large number of poems in Hindi. He may be contacted at prakashanand805@gmail.com.

[^0]: Keywords: Prime number, coprime, greatest common divisor (gcd), Euler's totient function

