A Divisibility Chain Problem

K M SASTRY

Notation. Let u and v be positive integers. By $u \mid v$ we mean "u is a divisor of v" and by $u \nmid v$ we mean: "u is not a divisor of v". For example, $4 \mid 12$, but $5 \nmid 12$.

Problem

Let a and b be positive integers such that

 $a \mid b^2, \quad b^2 \mid a^3, \quad a^3 \mid b^4, \quad b^4 \mid a^5, \quad a^5 \mid b^6, \quad \dots \quad (1)$

Prove that a = b.

Solution

We make use of the following auxiliary result (such a preliminary step is also called a 'lemma'):

Lemma. Let *m* and *n* be positive integers such that

$$m \le 2n \le 3m \le 4n \le 5m \le 6n \le \cdots.$$
 (2)

Then m = n.

Proof of lemma. The inequalities

 $m \le 2n \le 3m \le 4n \le \cdots$ imply that $(2k - 1)m \le 2kn$ for every positive integer *k*. Hence we have

$$\frac{m}{n} \le 1 + \frac{1}{2k - 1} \quad \text{for every positive integer } k.$$

Since

$$rac{1}{2k-1} o 0 \quad ext{as } k o \infty,$$

it follows that

$$\frac{m}{n} \le 1,$$

and so $m \leq n$.

Keywords: Prime number, divisible, lemma

96

The same inequalities also imply that $2kn \leq (2k+1)m$ for every positive integer k. Hence we have

$$\frac{n}{m} \le 1 + \frac{1}{2k}$$
 for every positive integer k.

Reasoning the same way as we did earlier, we conclude that

$$\frac{n}{m} \le 1,$$

and so $n \leq m$.

Since $m \le n$ and $n \le m$, it follows that m = n.

Solution of problem. The divisibility conditions imply that for any prime number p, if $p \mid a$ then $p \mid b$ as well; and in the same way, if $p \mid b$ then $p \mid a$ as well. Hence a and b are divisible by exactly the same set of primes.

Let *p* be any prime number dividing *a*, *b*. Let p^u be the highest power of *p* that divides *a*, and let p^v be the highest power of *p* that divides *b*. That is, we have $p^u \mid a$ but $p^{u+1} \nmid a$; and $p^v \mid b$ but $p^{v+1} \nmid b$. Here u > 0 and v > 0. Then from the given conditions we argue as follows:

- $a \mid b^2$, so $p^u \mid p^{2v}$, so $u \le 2v$;
- $b^2 | a^3$, so $p^{2v} | p^{3u}$, so $2v \le 3u$;
- $a^3 \mid b^4$, so $p^{3u} \mid p^{4v}$, so $3u \le 4v$;
- $b^4 | a^5$, so $p^{4v} | p^{5u}$, so $4v \le 5u$;

and so on. Hence:

$$u \leq 2v \leq 3u \leq 4v \leq 5u \leq \cdots$$
.

Invoking the lemma proved above, we deduce that u = v. So the highest power of p that divides a is identical to the highest power of p that divides b.

Since the same is true for every prime number that divides *a* and *b*, it follows that *a* and *b* have identical prime factorization. This implies that a = b.