A Divisibility Chain Problem

K M SASTRY

Notation. Let u and v be positive integers. By $u \mid v$ we mean " u is a divisor of v " and by $u \nmid v$ we mean: " u is not a divisor of v ". For example, $4 \mid 12$, but $5 \nmid 12$.

Problem

Let a and b be positive integers such that

$$
\begin{equation*}
a\left|b^{2}, \quad b^{2}\right| a^{3}, \quad a^{3}\left|b^{4}, \quad b^{4}\right| a^{5}, \quad a^{5} \mid b^{6}, \tag{1}
\end{equation*}
$$

Prove that $a=b$.

Solution

We make use of the following auxiliary result (such a preliminary step is also called a 'lemma'):

Lemma. Let m and n be positive integers such that

$$
\begin{equation*}
m \leq 2 n \leq 3 m \leq 4 n \leq 5 m \leq 6 n \leq \cdots \tag{2}
\end{equation*}
$$

Then $m=n$.
Proof of lemma. The inequalities
$m \leq 2 n \leq 3 m \leq 4 n \leq \cdots$ imply that $(2 k-1) m \leq 2 k n$ for every positive integer k. Hence we have

$$
\frac{m}{n} \leq 1+\frac{1}{2 k-1} \quad \text { for every positive integer } k
$$

Since

$$
\frac{1}{2 k-1} \rightarrow 0 \quad \text { as } k \rightarrow \infty,
$$

it follows that

$$
\frac{m}{n} \leq 1,
$$

and so $m \leq n$.

Keywords: Prime number, divisible, lemma

The same inequalities also imply that $2 k n \leq(2 k+1) m$ for every positive integer k. Hence we have

$$
\frac{n}{m} \leq 1+\frac{1}{2 k} \quad \text { for every positive integer } k
$$

Reasoning the same way as we did earlier, we conclude that

$$
\frac{n}{m} \leq 1
$$

and so $n \leq m$.
Since $m \leq n$ and $n \leq m$, it follows that $m=n$.
Solution of problem. The divisibility conditions imply that for any prime number p, if $p \mid a$ then $p \mid b$ as well; and in the same way, if $p \mid b$ then $p \mid a$ as well. Hence a and b are divisible by exactly the same set of primes.

Let p be any prime number dividing a, b. Let p^{u} be the highest power of p that divides a, and let p^{v} be the highest power of p that divides b. That is, we have $p^{u} \mid a$ but $p^{u+1} \nmid a$; and $p^{v} \mid b$ but $p^{v+1} \nmid b$. Here $u>0$ and $v>0$. Then from the given conditions we argue as follows:

- $a \mid b^{2}$, so $p^{u} \mid p^{2 v}$, so $u \leq 2 v$;
- $b^{2} \mid a^{3}$, so $p^{2 v} \mid p^{3 u}$, so $2 v \leq 3 u$;
- $a^{3} \mid b^{4}$, so $p^{3 u} \mid p^{4 v}$, so $3 u \leq 4 v$;
- $b^{4} \mid a^{5}$, so $p^{4 v} \mid p^{5 u}$, so $4 v \leq 5 u$;
and so on. Hence:

$$
u \leq 2 v \leq 3 u \leq 4 v \leq 5 u \leq \cdots
$$

Invoking the lemma proved above, we deduce that $u=v$. So the highest power of p that divides a is identical to the highest power of p that divides b.

Since the same is true for every prime number that divides a and b, it follows that a and b have identical prime factorization. This implies that $a=b$.

