Divergence and Convergence of Two Closely Related Infinite Series

TOYESH PRAKASH SHARMA

here are two kinds of infinite series: those that are *divergent*, and those that are *convergent*. The sum of the terms of a divergent series increases without limit as more terms are taken; the sum of the terms of a convergent series approaches a definite number as more terms are taken. A well-known divergent series is the *harmonic series*, which is the sum of the reciprocals of the positive integers, $\sum \frac{1}{n}$. It was first proved to be divergent by Nicole Oresme (1323-1382). Others gave proofs of the same statement, e.g., Cauchy, Augustus De Morgan, Johann Bernoulli, Euler, etc. Here I put forward my way for proving the divergence of $\sum_{n=1}^{\infty} 1/n$.

Theorem: $\sum_{n=1}^{\infty} 1/n$ is divergent.

Proof: Since $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$, it follows that if x > 0, then $e^x \ge 1 + x$ or $x \ge \ln(1 + x)$. Substituting x = 1/n where *n* is a positive integer, we get

$$\frac{1}{n} \ge \ln\left(1 + \frac{1}{n}\right) = \ln\left(n+1\right) - \ln n.$$

Keywords: Series, convergence, divergence

Taking summation on both sides for n = 1, 2, ..., k, we get

$$\sum_{n=1}^{k} \frac{1}{n} > (\ln 2 - \ln 1) + (\ln 3 - \ln 2) + (\ln 4 - \ln 3) + \dots + (\ln (k+1) - \ln k)$$
$$\Rightarrow \sum_{n=1}^{k} \frac{1}{n} > \ln (1+k).$$

Taking limits on both sides, $k \longrightarrow \infty$, we get

$$\sum_{n=1}^{\infty} \frac{1}{n} > \lim_{k \to \infty} \ln \left(1 + k \right) = \infty.$$

Hence $\sum_{n=1}^{\infty} 1/n$ is divergent.

In the series considered above, all the terms are positive. Another kind of series is one where the terms alternate in sign; they are called *alternating series*. We now examine a well-known alternating series closely related to the harmonic series: $\sum \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots$

Theorem: $\sum_{n=1}^{\infty} (-1)^{n-1} / n$ is convergent.

Proof: Consider the following sequence of inequalities which are all clearly true:

$$\frac{1}{3} - \frac{1}{4} < \frac{1}{2} - \frac{1}{3}$$
$$\frac{1}{5} - \frac{1}{6} < \frac{1}{3} - \frac{1}{4}$$
$$\frac{1}{7} - \frac{1}{8} < \frac{1}{4} - \frac{1}{5}$$
$$\dots$$

We also have, trivially:

$$1 - \frac{1}{2} = 1 - \frac{1}{2}.$$

Adding the corresponding sides of all these statements, we get

$$\begin{pmatrix} 1 - \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{3} - \frac{1}{4} \end{pmatrix} + \begin{pmatrix} \frac{1}{5} - \frac{1}{6} \end{pmatrix} + \begin{pmatrix} \frac{1}{7} - \frac{1}{8} \end{pmatrix} + \dots$$

 $< \begin{pmatrix} 1 - \frac{1}{2} \end{pmatrix} + \begin{pmatrix} \frac{1}{2} - \frac{1}{3} \end{pmatrix} + \begin{pmatrix} \frac{1}{3} - \frac{1}{4} \end{pmatrix} + \begin{pmatrix} \frac{1}{4} - \frac{1}{5} \end{pmatrix} + \dots,$

which yields, after simplifying the expression on the right side,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots < 1.$$

It follows that the sum of this alternating series is bounded above by 1. By converting the series into a sum of positive terms as follows,

$$\left(1-\frac{1}{2}\right) + \left(\frac{1}{3}-\frac{1}{4}\right) + \left(\frac{1}{5}-\frac{1}{6}\right) + \left(\frac{1}{7}-\frac{1}{8}\right) + \dots = \frac{1}{2} + \frac{1}{12} + \frac{1}{30} + \frac{1}{56} + \dots$$

we conclude that the series is convergent. (Mathematically, it is more accurate to say that the series is "conditionally convergent.")

TOYESH PRAKASH SHARMA got interested in Science, Mathematics and Literature when he was in 9th standard. He passed 10th and 12th from St. C.F. Andrews School, Agra. When he was in 11th standard, he got interested in doing Research in mathematics and till now many of his works have found place in different journals such as *Mathematical Gazette, Crux Mathematicorum, Parabola, AMJ, Pentagon, Octagon, At Right Angles, Fibonacci Quarterly, Mathematical Reflections,* etc. Currently he is doing his undergraduation in Physics and Mathematics from Agra College, Agra, India. He may be contacted at toyeshprakash@gmail.com.