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There are two kinds of infinite series: those that are
divergent, and those that are convergent. The sum of
the terms of a divergent series increases without limit

as more terms are taken; the sum of the terms of a convergent
series approaches a definite number as more terms are taken.
A well-known divergent series is the harmonic series, which is
the sum of the reciprocals of the positive integers,

∑ 1
n
. It

was first proved to be divergent by Nicole Oresme
(1323-1382). Others gave proofs of the same statement, e.g.,
Cauchy, Augustus De Morgan, Johann Bernoulli, Euler, etc.
Here I put forward my way for proving the divergence of∑∞

n=11/n.

Theorem:
∑∞

n=11/n is divergent.

Proof : Since ex = 1+ x+ x2
2! +

x3
3! + · · · , it follows that if

x > 0, then ex ≥ 1+ x or x ≥ ln (1+ x) . Substituting
x = 1/n where n is a positive integer, we get

1
n
≥ ln

(
1+

1
n

)
= ln (n+ 1)− ln n.
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Taking summation on both sides for n = 1, 2, . . . , k, we get

k∑
n=1

1
n
> (ln 2− ln 1) + (ln 3− ln 2) + (ln 4− ln 3) + · · ·+ (ln (k+ 1)− ln k)

⇒
k∑

n=1

1
n
> ln (1+ k) .

Taking limits on both sides, k −→ ∞, we get

∞∑
n=1

1
n
> lim

k→∞
ln (1+ k) = ∞.

Hence
∑∞

n=11/n is divergent.

In the series considered above, all the terms are positive. Another kind of series is one where the terms
alternate in sign; they are called alternating series. We now examine a well-known alternating series closely

related to the harmonic series:
∑ (−1)n−1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− . . ..

Theorem:
∑∞

n=1 (−1)n−1 /n is convergent.

Proof : Consider the following sequence of inequalities which are all clearly true:

1
3
− 1

4
<

1
2
− 1

3
1
5
− 1

6
<

1
3
− 1

4
1
7
− 1

8
<

1
4
− 1

5
· · · · · · · · ·

We also have, trivially:

1− 1
2
= 1− 1

2
.

Adding the corresponding sides of all these statements, we get
(
1− 1

2

)
+

(
1
3
− 1

4

)
+

(
1
5
− 1

6

)
+

(
1
7
− 1

8

)
+ . . .

<

(
1− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+

(
1
4
− 1

5

)
+ . . . ,

which yields, after simplifying the expression on the right side,

1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ . . . < 1.
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It follows that the sum of this alternating series is bounded above by 1. By converting the series into a sum
of positive terms as follows,

(
1− 1

2

)
+

(
1
3
− 1

4

)
+

(
1
5
− 1

6

)
+

(
1
7
− 1

8

)
+ . . . =

1
2
+

1
12

+
1
30

+
1
56

+ . . . ,

we conclude that the series is convergent. (Mathematically, it is more accurate to say that the series is
“conditionally convergent.”)
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