Dwelling on the Incircle

PRITHWIJIT DE

The purpose of this note is to encourage students and teachers alike to explore simple configurations in geometry and come up with interesting questions which can be answered by employing elementary knowledge of plane geometry.

Figure 1
Given a triangle $A B C$ with $A B=A C$ (see Figure 1). Let I be its incentre, and r its inradius. For such a triangle the circumcentre (O), centroid (G), orthocentre (H) and nine-point centre (N) lie on the line $A I$. It may so happen that any of these points lies on the incircle. Can we determine all such isosceles triangles $A B C$ with $A B=A C$, up to similarity, for which any one of O, G, H and N lies on the incircle? Let us explore.

Keywords: Incircle, incentre, circumcentre, centroid, orthocentre, antipode

Let $A B=A C=x$ and $B C=y$. We consider each possibility in turn.
If the circumcentre lies on the incircle Suppose O lies on the incircle. Let D be the point of intersection of $A I$ and $B C$ and let E be the antipode of D on the incircle (i.e., the point diametrically opposite to D). Thus O can coincide with either D or E.
If O coincides with D, then $\measuredangle B A C=\frac{1}{2} \angle B O C=90^{\circ}$, so $A B C$ is a right-angled isosceles triangle.
If O coincides with E, then $O D=R \cos A=2 r$, so

$$
A D=A O+O D=R+2 r,
$$

where R is the radius of the circumcircle, and

$$
A D=A I+I D=r \csc (A / 2)+r .
$$

Combining these we obtain

$$
\frac{r}{R}=\frac{\sin (A / 2)}{1-\sin (A / 2)}=\frac{\cos A}{2} .
$$

Using $\cos A=1-2 \sin ^{2}(A / 2)$ we reduce the last equation to

$$
1-3 \sin (A / 2)-2 \sin ^{2}(A / 2)+2 \sin ^{3}(A / 2)=(1+\sin (A / 2))\left(1-4 \sin (A / 2)+2 \sin ^{2}(A / 2)\right)=0 .
$$

Since $0<\sin (A / 2)<1$, the only admissible root of this equation is $\sin (A / 2)=1-1 / \sqrt{2}$ whence $\measuredangle B A C=34^{\circ}$, approximately. See Figure 2.

Figure 2

If the centroid lies on the incircle If G lies on the incircle, it must coincide with E. Hence $G D=2 r$. Since $A D$ is the median we must have $G D=A D / 3$. Therefore

$$
2 r=\frac{1}{3} \sqrt{x^{2}-y^{2} / 4} .
$$

But

$$
r=\frac{[A B C]}{s}=\frac{\frac{y}{2} \sqrt{x^{2}-y^{2} / 4}}{(2 x+y) / 2} .
$$

Eliminating r from these relations, we get

$$
6 y=2 x+y, \quad \therefore \frac{y}{x}=\frac{2}{5},
$$

and $\sin (A / 2)=y / 2 x=1 / 5$ and $\measuredangle B A C=23^{\circ}$, approximately. See Figure 3 .

Figure 3

If the orthocentre lies on the incircle Similarly, if H lies on the incircle, then it has to coincide with E, so $H D=2 r$. Angle chasing gives $\measuredangle D A B=\measuredangle D B H$, therefore the triangles $D A B$ and $D B H$ are similar. Hence

$$
\frac{B D}{A D}=\frac{H D}{B D}
$$

But $B D=y / 2, A D=\sqrt{x^{2}-y^{2} / 4}$ and $H D=2 r=\frac{2 y \sqrt{x^{2}-y^{2} / 4}}{2 x+y}$. Therefore we obtain

$$
y^{2}=\frac{2 y\left(4 x^{2}-y^{2}\right)}{2 x+y}
$$

whence $4 x=3 y$ implying that $\sin (A / 2)=y / 2 x=2 / 3$ and $A=84^{\circ}$, approximately. See Figure 4 .
If the nine-point centre lies on the incircle Lastly, we consider the case where N lies on the incircle. Recall that N is the centre of the circumcircle of the triangle (the medial triangle) whose vertices are the midpoints of the sides of $A B C$. Since the medial triangle of any triangle is similar to the original triangle with similarity ratio $1 / 2$, the radius of the nine-point circle is half of the radius of the circumcircle of the original triangle. Since the nine-point circle passes through D, the midpoint of $B C$, we assert that if N lies on the incircle of $A B C$ then it has to coincide with E. Hence $N D=2 r$. But, if R is the circumradius of

Figure 4
$A B C$ then $N D=R / 2$. Therefore $R=4 r$. Now

$$
\frac{R}{r}=\frac{x^{2} y(2 x+y)}{8[A B C]^{2}}=\frac{2 x^{2} y(2 x+y)}{y^{2}\left(4 x^{2}-y^{2}\right)}=\frac{2 x^{2}}{y(2 x-y)},
$$

whence

$$
\frac{2 x^{2}}{y(2 x-y)}=4
$$

implying that

$$
(x / y)^{2}-4(x / y)+2=0 .
$$

Thus $x / y=2 \pm \sqrt{2}$ and $\sin (A / 2)=y / 2 x=(2 \pm \sqrt{2}) / 4$. The corresponding values of $\measuredangle B A C$ are 117° and 17°, approximately. See Figure 5. (The figure for the other possibility has not been drawn as there is a difficulty with the scale.)

Figure 5

PRITHWIJIT DE is the National Coordinator of the Mathematical Olympiad Programme of the Government of India. He is an Associate Professor at the Homi Bhabha Centre for Science Education (HBCSE), TIFR, Mumbai. He loves to read and write popular articles in mathematics as much as he enjoys mathematical problem solving. He may be contacted at de.prithwijit@gmail.com.

