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Abstract72

Biodiversity monitoring is an almost inconceivable challenge at73

the scale of the entire Earth. The current (and soon to be flown)74

generation of spaceborne and airborne optical sensors (i.e., imaging75

spectrometers) can collect detailed information at unprecedented spa-76

tial, temporal, and spectral resolutions. These new data streams are77

preceded by a revolution in modelling and analytics that can utilize78

the richness of these datasets to measure a wide range of plant traits,79

community composition, and ecosystem functions. At the heart of this80

framework for monitoring plant biodiversity is the idea of remotely81

identifying species by making use of the ‘spectral species’ concept. In82

theory, the spectral species concept can be defined as a species char-83

acterized by a unique spectral signature and thus remotely detectable84

within pixel units of a spectral image. In reality, depending on spatial85

resolution, pixels may contain several species which renders species-86

specific assignment of spectral information more challenging. The aim87

of this paper is to review the spectral species concept and relate it to88

underlying ecological principles, while also discussing the complexi-89

ties, challenges and opportunities to apply this concept given current90

and future scientific advances in remote sensing.91

Keywords: airborne sensors; biodiversity; ecoinformatics; hyperspectral92

images; plant optical types; remote sensing; satellite imagery; vegetation93

communities.94

Plain language summary (PLS)95

Biodiversity monitoring based on field data in almost inconceivable at the96

scale of the entire Earth. Over the past decades, remote sensing has opened97

possibilities for Earth observation from air and space, allowing us to mon-98

itor ecological change, primarily expressed by changes in vegetation cover,99

distribution and functioning, which can be subsequently linked to drivers of100

change in space and time, from local to global scale. Recently, the spectral101

species concept - an algorithm that clusterizes pixels from spectral images102

with a similar spectral signal (referred to as ‘spectral species’) - has brought103

attention . The aim of this paper is to review the ecological functioning104

principles of the spectral species concept and to refine its definition by a105

better linkage with field observations of plant species distribution data (i.e.106

presence-absence data) available from vegetation surveys.107
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Key Points (KP)108

1. Remote sensing has opened possibilities for Earth observation from air109

and space, allowing us to monitor ecological change.110

2. Biodiversity monitoring based on field data in almost inconceivable at111

the scale of the entire Earth.112

3. The spectral species concept, relating field to remotely sensed data,113

can open news ways to measure diversity from space.114
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1 Background115

Rapid environmental changes are occurring across the globe at small to116

large spatial extents due to the combined effects of climate change, land-use117

changes, and biological invasions (Kreft & Jetz, 2007). Therefore, there is118

an urgent pressing demand for operational biodiversity monitoring systems119

that will improve our understanding of the repercussions of these drivers120

of changes on ecosystem functioning and lead to better ecosystem manage-121

ment (Skidmore et al., 2021). New approaches are required to obtain timely122

biodiversity data that are consistently and routinely measured across the123

Earth surface. Some of these needs are fulfilled by remote sensing informa-124

tion (Schweiger and Laliberté, 2022). Over the past decades, remote sensing125

has opened possibilities for Earth observation from air and space, allowing126

us to monitor ecological change, primarily expressed by changes in vegeta-127

tion cover, distribution and functioning, which can be subsequently linked128

to drivers of change in space and time, from local to global scale (Skidmore129

et al., 2015; Asner et al., 2017). Recent technological advances in remote130

sensing data acquisition and processing now open new perspectives for moni-131

toring changes in biodiversity at unprecedented details over large geographic132

areas, and ultimately over the entire Earth (Luque et al., 2018; Randin et al.,133

2020). Furthermore, missions like the Surface Biology and Geology (SBG)134

by NASA (https://sbg.jpl.nasa.gov/, Cawse-Nicholson et al., 2021) have135

been implemented to support the development of algorithms for exploiting136

spaceborne remotely sensed data and providing a relatively fast but accurate137

estimate of ecological properties in vast areas over time.138

Spaceborne and airborne passive optical sensors relying on imaging spec-139

troscopy (i.e., spectral remote sensing including multispectral and hyperspec-140

tral imaging) are a good example of the recent remote-sensing revolution in141

ecology (Kwok, 2018). By measuring information from most of the electro-142

magnetic spectrum operable for Earth observation, imaging spectroscopy has143

demonstrated significant capabilities to detect and monitor the spatial dis-144

tribution of plant communities, species and traits (Asner & Martin, 2008;145

Schaaf et al., 2013; Schweiger et al., 2017; Skowronek et al., 2017). The pixel146

reflectance in an optical image results from the integration of multiple inter-147

actions between light and matter, including vegetation and the surrounding148

environment (soil, atmosphere). Intrinsic properties of vegetation influenc-149

ing this remotely sensed information correspond to biophysical and biochem-150

ical properties (i.e., traits) of leaves and the canopy that can be related to151

levels of ecological organizations such as ecosystems, communities, species,152

and potentially to the intraspecific trait of plant genotypes (Madritch et al.,153

2014; Blonder et al., 2020). Spectroscopy has long been used to capture the154
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characteristic absorption features of biochemical compounds of plants, which155

biologically corresponds to the phenotypic expression of some of the genes156

that describe individuals belonging to a given species (e.g., Jacquemoud &157

Ustin, 2019). These biochemical traits and their dynamics are linked to158

functional traits, opening access to the monitoring of ecosystem functions,159

processes and services. Besides, imaging spectroscopy has already demon-160

strated capabilities for species discrimination in various types of ecosystems161

(Féret & Asner, 2014; Fassnacht et al., 2016; Skowronek et al., 2017). At the162

sub-organism level, biochemical properties estimated from observations at163

leaf and canopy scales (Baret et al., 1994; Kokaly et al., 2009; Ollinger, 2011;164

Serbin et al., 2012) are described in commonly used radiative transfer mod-165

els (Jacquemoud et al., 1996; Féret et al., 2008; Torresani et al., 2021). The166

fine spectral resolution and spectral sampling interval on imaging spectrome-167

ters provide information to quantify key biochemical properties of vegetation168

such as leaf pigment (e.g., chlorophylls, carotenoids, anthocyanins), water,169

cellulose, lignin, nitrogen, phosphorous and protein contents based on their170

specific light absorption characteristics (Ewald et al., 2018).171

The link between biochemical properties, functional attributes (morpho-172

logical, physiological and phenological traits), and taxonomic information is173

often implicitly assumed when performing spectroscopic analysis for biodi-174

versity monitoring. Recently, the spectral species concept - an algorithm that175

clusters pixels from spectral images with a similar spectral signal (referred to176

as ‘spectral species’) - has brought attention (Féret & Asner, 2014; Rocchini177

et al., 2021b). However, in reality, the automatic detection of pixel units178

sharing a similar spectral signature in a remotely-sensed spectral image does179

not necessarily match with the actual distribution pattern of a given species180

but may rather reflect the spatial distribution pattern of a group of species181

sharing similar biochemical properties (Woodcock and Strahler, 1987).182

The capacity to identify species is often explained by similarities in spec-183

tral signatures between individuals of the same species, and dissimilarities184

in spectral signatures between individuals of different species. There is no185

taxonomic marker in spectroscopy, but individuals of the same species are186

characterized by a limited set of biophysical and biochemical properties, al-187

lowing differentiation from individuals from other species. Despite signifi-188

cant scientific advances, development of automated retrievals of plant bio-189

chemistry, traits and species identification from satellites across the globe190

and over time remains aspirational and more work is needed to accomplish191

this goal, especially for devising a global monitoring of biodiversity change.192

Here, we aim at introducing the ecological functioning principles of the spec-193

tral species concept and refining its definition by a better linkage with field194

observations of plant species distribution data (i.e., presence-absence data)195

6
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available from vegetation surveys. Finally, we will deeply face complexi-196

ties, challenges and opportunities associated with the use of this concept197

for remotely-sensed biodiversity monitoring, including species richness and198

evenness (alpha-diversity) as well as composition turnover (beta-diversity).199

1.1 A constellation of optical sensors to explore the200

spectral domain of the Earth surface201

The current generation of Earth observing spaceborne and airborne sensors202

acquires highly-resolved images over a wide range of wavelengths in the solar203

(optical) and microwave domains of the electromagnetic spectrum (Ustin &204

Middleton, 2021). The information measured by optical sensors operating in205

the visible (380-750 nm) and near to shortwave infrared (750-2500 nm) re-206

gions largely corresponds to the region of solar reflectance from the Earth’s207

surface, and are acquired for each individual pixel of an image. Image acqui-208

sition can occur at fine temporal resolutions of days to weeks and in a few209

cases even at multiple revisits during the day, but data availability and qual-210

ity are strongly dependent on atmospheric conditions. Optical remote sensing211

systems include those that measure a few discrete spectral bands (multispec-212

tral imaging), such as: (i) the Thematic Mapper on USGS Landsat; (ii)213

MERIS (Medium Resolution Imaging Spectrometer) on the ESA Envisat;214

(iii) MODIS (Moderate Resolution Imaging Spectrometer) on the NASA215

Terra and Aqua platforms; and more recently (iv) the Sentinel-2 satellites of216

the ESA Copernicus program. These instruments provide open access data217

describing the Earth surface at frequent intervals and are complemented by218

commercial satellites that have high spatial resolution like IKONOS, SPOT,219

Quickbird, WorldView and more recently the Planet constellation.220

Some spaceborne sensors provide enhanced spectral capabilities and mea-221

sure surface reflectance over hundreds of narrow contiguous spectral bands222

covering the solar radiation spectrum. These hyperspectral satellites are also223

called imaging spectrometers. The term hyperspectral emphasizes instru-224

ments measuring a large number of spectral bands while imaging spectrom-225

eter refers to the type of instrument used, i.e., a spectrometer that measures226

bands across a spectral wavelength interval (spectrum) and produces a 2D ar-227

ray of pixels and spectra. Hyperspectral satellites have demonstrated strong228

potential for characterizing the chemical and physical structure of the Earth229

surface, with applications in mineralogy, soil sciences, and vegetation sciences230

(Plaza et al., 2009). Such images reveal details that improve estimates of231

key vegetation properties and better discriminate between vegetation types,232

species or even between genotypes of a given species when the spatial and233

7
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spectral resolutions are sufficient to match individuals (Madritch et al., 2014;234

Blonder et al., 2020). Several satellites hosting imaging spectrometers were235

recently launched, and a multitude of satellite missions are in preparation236

(see the review paper by Ustin & Middleton, 2021). These include DESIS237

and HISUI on the International Space Station (ISS), the free flying platforms238

PRISMA and EnMAP (expected launch in 2022), along with NASA’s and239

ESA’s global monitoring imaging spectrometer missions SBG and CHIME240

(expected launches in the late 2020s).241

1.2 Remote sensing tools for monitoring biodiversity242

Species identification from the measurement of the absorptive and reflective243

characteristics of plants is based on the hypothesis that individuals from the244

same species share similar biochemical properties, leading to similar spectral245

characteristics measured at the pixel scale. However, individuals from the246

same species may also share similar biochemical properties with individuals247

from another species which may limit our abilities to assign a given spectral248

signature to a given species. Besides, one needs to also consider phenological249

patterns, since remote sensing data is generally only acquired during spe-250

cific periods of time (e.g. seasonal), or under specific conditions (e.g. health251

status), or with specific sensor information (e.g. spatial, spectral and ra-252

diometric resolutions across all wavelengths), all of which may complicate253

species identification or discrimination. Thus, there are several challenges to254

identifying a taxonomically identified species with a unique spectral signa-255

ture. Previous research has shown that minor shifts in plant development256

induced by the environment and its interaction with different plant geno-257

types (i.e., phenotypic variability) may result in co-location between vegeta-258

tive, flowering, fruiting, or senescent stages, each of which expresses different259

biophysical and biochemical properties. Hence, multiple spectral signatures260

corresponding to multiple biochemical traits may exist for the same species.261

Although adding complexity, these problems have solutions. For example,262

fast growing annual species and facultative annuals (e.g., the invasive Water263

Hyacinth (Eichhornia crassipes) are often found in different growth stages264

and detection requires several spectral signatures to account for the different265

growth stages that are later combined for mapping the focal species of con-266

cern (Khanna et al., 2011). Further, spectral discrimination among species is267

difficult, for example when several species in an ecosystem may share a suite268

of traits (i.e., strong overlap in the trait space) due to climate constraints and269

environmental filtering. This happens when trait combinations make individ-270

ual species phenotypically similar (e.g., grass species in grassland habitats,271

as shown in diversity studies by Gholizadeh et al., 2019, 2020), or when dif-272

8
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ferent combinations of traits result in similar spectral signatures (Kokaly et273

al., 2009; Ollinger, 2011). Additional empirical evidence is thus necessary to274

contextualize and resolve these questions (Andrew and Ustin, 2008), such as275

the data provided by field data collections, experimental studies, and model-276

ing, to achieve full ecological understanding of information from the satellite277

data to monitor biodiversity.278

1.3 From optical types to the spectral species concept279

Just as traditional biodiversity theory focuses on differences between individ-280

uals to assign individuals to different species in order to assess species rich-281

ness, diversity measured with imaging spectrometer data from spaceborne282

and airborne optical sensors is based on pixels, each with its own spectral283

information (i.e., reflectance) (Rocchini et al., 2021a). The term spectral284

signature is more specific than spectral information and usually applied to a285

specific type of surface (soil, vegetation, water), to a specific material (i.e.,286

traits like chlorophyll concentration), or to a specific level of biological or-287

ganization (genotype, population, species, stand, community, ecosystem).288

Spectral diversity corresponds to the spatial variation of spectral informa-289

tion: it is tightly related to the notion of (multivariate) variation among290

species traits (Rocchini et al., 2018) which is the basis of functional diversity291

in classical ecological theory. In other terms, spectral diversity reflects - at292

least to a large extent - diversity in community functioning based on the as-293

sortment of functional traits in the community, irrespective of the species/in-294

dividuals that possess these traits (Petchey & Gaston , 2002; Matson et al.,295

2005). Therefore, spectral diversity is conceptually closer to the notion of296

functional diversity than to the concept of species or taxonomic diversity.297

For this reason, it is important to keep in mind that the spectral signature298

of a given pixel unit in a spectral image cannot directly be assigned to a299

given individual belonging to a specific taxonomic entity (i.e., the spectral300

species concept). First of all, the pixel size of the image may not match301

with an actual individual in the field but may contain several individuals be-302

longing to the same species (i.e., a population) or several individuals belong303

to different species (i.e., a community) such that the same species could be304

involved in different spectral signatures or ‘optical types’ (Figure 1). Addi-305

tionally, the same suite of biochemical traits (e.g., foliar nutrient contents)306

may show extremely high spectral variability depending on the health status307

of the focal plant species such that different optical types could be assigned308

to the same species depending on its status: healthy vs. stressed (Figure309

1, panels f,g,h). Hence, prior to defining the spectral species concept, one310

needs to identify the different optical types occurring within a given spectral311

9
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image and then assess how each optical type overlaps with the concept of312

taxonomic species so that one can assign an optical type to a specific species313

(i.e., the spectral species concept) or a group of species. To confirm that314

the spatial distribution pattern of pixels sharing a similar spectral signature315

(i.e., an optical type) can be directly assigned to the spatial distribution pat-316

tern of individuals from a single species (i.e., the spectral species), one needs317

ground-truth data on species distribution (i.e., presence-absence data from318

vegetation surveys) from within the spectral image.319

Depending on pixel size and size of individuals, pixels can cover multiple320

individuals or parts of an individual, or stands of one species or mixed stands321

(Figure 1). In forests, where the spectral species concept was born, a match322

between spectral and biological species was furthered by the fact that pixels323

have a higher chance to belong to one species alone (Figure 1, panels a to324

e, with small pixel size). This does not apply to all situations. Grassland325

communities, for example, pose a greater challenge because pixels regularly326

contain several species and optical types can at best be linked to entire327

communities (Figure 1, panels f to h with any pixel size). These, however,328

are even less clearly delimited objects than species.329

1.4 Spectral species translating spatial distributions of330

optical types into diversity metrics331

Various analytical approaches have been developed to take advantage of the332

spectral information in the optical domain and investigate different dimen-333

sions of biodiversity (see the review paper by Rocchini et al., 2018). These334

approaches have demonstrated that it is possible to map and understand335

functional and taxonomic diversity through space and time, achieved through336

methodological approaches that differ in their focus, either statistical or337

process-based. They include data transformation (Rocchini et al., 2017),338

feature selection and dimensionality reduction (Feilhauer et al., 2011), and339

machine learning techniques (Kitzes et al., 2021).340

The number of plant optical types proposed by Ustin & Gamon (2010) is341

consistent with the Spectral Variation Hypothesis (SVH) (Palmer et al., 2002;342

Rocchini et al., 2010) which states that ecosystem heterogeneity is associated343

with high spectral variability. In other words, increased environmental het-344

erogeneity provides more niches for species to co-occur in geographical space345

with an expected increase in local species richness (Palmer et al., 2002).346

For optical types, we therefore expect greater diversity where greater spatial347

environmental heterogeneity occurs.348

Spectral species - i.e., the number of spectrally distinct classes that ap-349

10
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proximate species - are based on the hypothesis that proper processing of350

images allows discrimination among species, groups of species, or functional351

groups. Spectral species aim to discretize remotely-sensed information into352

groups of pixels through unsupervised clustering. The notion of spectral353

species was successfully applied for mapping tropical biodiversity using air-354

borne high spatial resolution imaging spectroscopy (Féret & Asner, 2014),355

under the assumption that the majority of pixels did not contain plant mix-356

tures and that individual pixels could be assigned to a species, given that357

spectral variance among pixels meet statistical criteria and that the average358

tree crown size approximates the pixel size. Underwood et al. (2007) and359

Thorp al. (2013) evaluated information content for species mapping from360

different spatial and spectral resolutions, concluding that high spectral reso-361

lution contributed substantially more information for species mapping than362

higher spatial resolution. Hence, spectral species and optical types are con-363

ceptually equivalent in their purpose to discriminate among optical entities364

acquired from an image, but the appropriateness of the terminology may365

vary with the type of ecosystem and spatial resolution of the sensor.366

A spectral species is then a set of pixels having similar spectral prop-367

erties that can be used as a proxy for ecologically relevant taxonomic or368

functional groups, and eventually inventoried to calculate biodiversity met-369

rics like alpha-diversity (e.g., Shannon’s H, Simpson’s D, Rényi’s H) and370

beta-diversity (e.g., Bray-Curtis dissimilarity or Rao’s quadratic entropy)371

across a landscape (Box 1). Clustering approaches similar to the spectral372

species framework have been successfully used to map plant species diversity373

over very different habitats and geographical regions: from African savan-374

nas (Baldeck et al., 2014) to grasslands in the Platte River ecosystem near375

Wood River, Nebraska, USA (Gholizadeh et al., 2020), and from the Peru-376

vian Andes-Amazon tropical forests (Féret & Asner, 2014) to old-growth,377

secondary and artificial forests of the Shennongjia National Forest Natural378

Reserve in China (Zhao et al., 2018).379

Spectral species combined with functional trait estimation contribute to380

biodiversity understanding by characterizing the morphological (canopy ar-381

chitecture, gap fraction, etc.) and functional traits, that define the functional382

role of a species in an ecosystem, e.g. carbon capture strategies by resource383

acquisition or resource conservation strategies (like drought responses), that384

then provide a basis to connect spectral species with the taxonomic species385

that exhibit these trait assemblages. Therefore, spectral species provide a386

basis to connect with biological species and eventually explore spatial dis-387

tribution of trait assemblages, their evolution in time, and their linkages to388

environmental or human factors.389

11
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2 Complexities and challenges390

Many of the uncertainties of the spectral species concept apply generally to391

remotely sensed classified images, which we will not review in detail because392

they are extensively addressed elsewhere (e.g., Lu & Weng, 2005; Kun et al.,393

2011). The spectral species method of identifying spectral species with dis-394

tinctive traits facilitates identification of rare species that occupy few pixels395

in an image. Rare and endemic plants by definition do not grow in large396

colonies of many individuals and generally have restricted distributions. But397

they are of importance to biodiversity mapping because there are far more398

rare species than frequent species and they are often concentrated in areas399

of high biodiversity, especially in hotspots (Griggs, 1940; Medail and Quezel,400

1997; Ricotta et al., 2010). In terms of biodiversity they may represent401

species with unique morphological features and genetic richness (Myers et402

al., 2000; Joppa et al., 2011). Other aspects of uncertainty around the oper-403

ationalization of the spectral species concept are similar to many problems404

encountered in vegetation classification systems, such as whether rare species405

are retained in the classified data, whether the classes are realistic in terms406

of field measured data, and how well the method deals with mixed pixels407

(multispecies pixels, species with multiple phenotypes).408

Some of the complications that can make the spectral species concept409

difficult to handle are shown in the aforementioned Figure 1, where differences410

in reflection do not necessarily adhere to species boundaries. In fact, several411

factors determine whether the spectral species concept predicts the current412

number of species in the area under study. First, more fundamentally it413

depends on how the taxonomic species are determined, e.g., whether related414

taxa are characterized by ‘splitting’ or ‘lumping’ criteria, leading to more or415

fewer species. There are also cases of cryptic diversity, i.e., species that are416

not morphologically or phenotypically distinct, but having a distinct genetic417

make-up. Thus, the actual number of detected species approximates the true418

number. Second, even if species are clearly assigned, the spectral species419

concept requires the measurement of optically active traits, which may not420

be the traits that differentiate species, or - because of trade-offs (based on the421

species functional strategy) or selective pressures (resulting from competition,422

human use and other types of ecological interactions) - they may be not423

expressed at the time of measurement. Third, community composition and424

abundance interact with what is detectable – as the sensor primarily measures425

top of canopy dominant species, which may identify important ecosystem426

functions but miss much of the diversity.427

The spectral species concept, as with most remotely sensed measures, is428

dependent on the temporal dimension to which it is applied. For instance,429
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measuring the phenological differences among co-occurring plant species through-430

out the season would improve species detection. Including seasonal changes431

in the analysis may improve detection of understory species when the decid-432

uous overstory is dormant. Multitemporal datasets can form multi-seasonal433

spectral signatures to account for seasonal changes in a species (e.g., Somers434

& Asner, 2014) and multitemporal spectral libraries are under development435

(Dudley et al., 2015). The spectral species concept has shown consistency in436

identifying taxonomic species and traits from other taxonomic species and437

their traits. Detecting species in mixed pixels depends on the sensor traits438

listed above and the magnitude of the differences among the spectral signa-439

tures of the species in the pixel. Species with different functional strategies440

that are distinguishable in optically active traits will be easier to identify441

than species with more similar trait assemblies, but which are not optically442

active. Differences in traits due to leaf types (evergreen or deciduous, needle443

leaf or broadleaf) create considerable differences in leaf reflectance and timing444

the date of data acquisition to maximize phenological differences generally445

always improves the ability to detect sub pixel species. The spectral species446

concept has yet to be widely tested over the global range of ecosystems and447

environmental conditions so there is a need to determine its performance and448

limitations at these scales.449

2.1 Ecological issues behind spectral species450

The spectral species concept was initially developed to allow computation451

of diversity indices usually computed from species inventories, but with pix-452

els used instead of species. It did not intend to directly estimate ‘abso-453

lute’ species richness from the spectral clustering, but rather hypothesized454

that relative species richness and higher-level diversity indices integrating455

richness and abundance or dissimilarity over space, could be estimated and456

compared within a limited spatial extent corresponding to an airborne imag-457

ing spectroscopy acquisition. Even in a very unlikely situation of perfect458

spectral discrimination among species in a remotely sensed acquisition, the459

predicted number of species may be smaller than the actual species count460

due to problems related to the potential similarity of traits among multiple461

species, especially when the growth forms and phenology are similar. The462

predicted number of species may also be higher than the actual species count463

if individuals from the same species show phenological shifts. The naming464

of spectral classes requires matching the taxonomic species information with465

the spectral information. If the taxonomic naming was based on extreme466

clumping of groups into fewer taxa or the splitting of taxa into increased467

number of taxa, the predicted spectral species may differ from the number of468
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biological taxa identified at a site. Perhaps knowledge of the predicted num-469

ber of spectral species might result in rethinking the criteria for recognition470

and taxonomic revisions, or similarly knowledge of the species may require471

rethinking of how spectroscopy data were analyzed.472

While ecological communities have a variety of either dominant, co-dominant473

and rare species, the latter contribute a lot to the highest diversity measur-474

able on Earth. This is a problem for remote sensing approaches based on475

clustering, as these algorithms often delete clusters with just a few data476

points (minimum class size or minimum/maximum number of classes may477

be selected in the setup), thus there is a tendency to lose rare and endemic478

species likely fundamental for biological diversity and ecosystem functions. A479

‘continuous surface’ analytical method that directly addresses this problem480

is the widely used ‘Multiple Endmember Mixture Model’ (MESMA, Roberts481

et al., 1998), which models each pixel from a range of ‘endmembers’ (also482

referred to as ‘pure spectra’) identified statistically from the convex hull of483

the data hypervolume. The model can retain classes with small numbers of484

endmembers depending on user criteria but may have the difficulty in as-485

signing class labels when the variation is continuous (e.g., across a natural486

continuum or from one habitat type to another, Schmidtlein et al., 2007).487

Environmental heterogeneity may also affect the accuracy of the spectral488

species methodology (Schmidtlein & Fassnacht, 2017). Disturbances may489

increase or decrease biodiversity, with a net zero effect on heterogeneity.490

There are several examples (e.g., forest gap openings, fire spread, and urban491

development) that can increase heterogeneity without an increase overall bi-492

ological diversity. Spectral species should detect these changes as differences493

in the assemblage and range of traits being measured, although there is un-494

certainty about the least detectable magnitude of change. Therefore, we495

expect remotely sensed spectral species to provide a first-order exploratory496

tool to, at least detect areas that are suspected of hosting a high number497

of species or, alternatively, identify areas that should host larger numbers of498

species (based on independent criteria) but don’t. From this point of view,499

in-situ data would greatly improve the classification, validate its accuracy,500

and provide a basis to investigate and identify sites that do not match a501

priori expectations (Foody et al., 2016).502

503

The R package (biodivMapR) dedicated to applications of the spectral504

species algorithm (Féret and de Boissieu, 2020) on raster data requires the505

number of spectral species be defined by the user. The method is not in-506

tended to estimate the absolute number of species from remote sensing, as507

this problem is highly scale and context dependent as explained earlier. The508

definition of the optimal number of clusters in a dataset is a specific problem509
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that the spectral species framework was also not intended to solve. Adding510

a method to determine the number of clusters corresponding to species rich-511

ness over a full dataset would definitely contribute to the generalization of the512

spectral species framework over various ecosystems. The number of species513

included in a remote sensing acquisition is not generally known a priori for514

most of the Earth’s ecosystems. However, there are statistical approaches515

to estimate the number with enough accuracy that realistic values could be516

produced (Chang and Du, 2004; Gholizadeh et al., 2020) , as well as deeply517

rooted ecological principles based on species dispersal, biogeography, land-518

scape ecology (Rocchini et al., 2021a).519

There are questions on whether this method will continue to be successful520

at the spatial scales of satellites, where multiple species within pixels cause521

spectral mixing, and under conditions of sparse vegetation where mixed pix-522

els can include plants, soils, plant litter, geological minerals, water, ice and523

man-made materials. This will be resolved with the use and applications524

of the new generation of hyperspectral satellites. The various spaceborne525

imaging spectrometers (see the review paper by Ustin & Middleton, 2021)526

that are available now (DESIS, EnMAP, HISUI, PRISMA) or in the next few527

years (e.g., CHARM, EMIT, SBG) all have 30m pixels. These imaging spec-528

trometers will provide ample opportunities to examine how well the spectral529

species concept scales up and across ecosystems.530

In addition to passive optical sensors, reviewed in this manuscript, LiDAR531

and radar active sensors might complement observations with the capacity532

to penetrate the uppermost layer of vegetation and provide information on533

canopy structure, while being less sensitive to atmospheric perturbations534

than passive optical sensors, Asner et al., 2008; Bergen et al., 2009; Zhao et535

al., 2018; Mulatu et al., 2019; Simonson et al., 2021; Lenoir et al., in press).536

For instance, the GEDI LiDAR mission on the ISS is measuring at high537

vertical and spatial resolutions the distribution and height of global woody538

vegetation to provide structural information, including understory data, for539

biodiversity estimates. Besides, the NISAR and Biomass radar missions540

(launches in 2023) will monitor global patterns of biomass, disturbances,541

and impacts on biodiversity. Together, advances in the spatial, spectral and542

temporal dimensions of imagery offer immense data streams that can be har-543

nessed to better understand the processes of biological functioning, and to544

systematically map and monitor ecosystem changes from local to regional to545

global scale.546
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3 Outlook547

In this manuscript we focused on the need to model biodiversity from hy-548

perspectral remote sensing and field data to calibrate such models. A huge549

amount of field (free) data is actually available (e.g., sPlotOpen, GBIF), but550

creativity for mapping species diversity from hyperspectral imagery should be551

reinforced. From this point of view, the spectral species concept is expected552

to make a major contribution in mapping and analysis of hyperspectral satel-553

lite data to produce remote sensing based essential biodiversity variables554

(RS-EBVs, see Skidmore et al., 2015, 2021). Even if the predicted spectral555

species do not precisely identify the number and identity of taxonomic species556

in an image, it will provide a first-order exploratory tool to detect areas of557

low to high species diversity. Such approaches will require a better under-558

standing of the range of conditions under which the spectral species concept559

can operate. In section 2 we highlight some limitations for applications of560

the concept, but many of these limitations should be seen as new opportu-561

nities for research. These include, among others, identification of additional562

spectral characteristics that can be captured and what additional traits, and563

thus more species will be detected. We are aware that very small absorption564

features are present in plant spectra and are statistically detectable but we565

do not know the physical basis of the biochemical/biophysical material that566

is absorbing this energy, highlighting an important avenue of research for the567

future. There is an ever-growing number of new traits reported from imaging568

spectroscopy research, ranging from phenolic and isoprene compounds, non-569

structural carbohydrates, fiber content (Serbin et al., 2014; Singh et al., 2015;570

Ely et al., 2019), essential nutrients including potassium, phosphorous, and571

calcium (Asner et al., 2015; Ely et al., 2019) to RuBP carboxylation (Vcmax)572

and regeneration (Jmax) (Serbin et al., 2012, 2014; Rogers et al., 2017; Wu et573

al., 2019). Such information is retrieved from measurements enabled by to-574

day’s imaging spectrometers, which typically have spectral resolutions of 10575

nanometer (nm) spectral bands cross the solar spectrum for a total of around576

200-250 bands, some have 3-5nm in the visible-near-infrared wavelengths and577

5-10nm in the shortwave infrared region. New satellite sensors under devel-578

opment (Flora on the Flex platform and GeoCarb) are designed to detect579

chlorophyll fluorescence with 1-3nm narrow bands in the wavelength regions580

where chlorophyll fluoresces near the oxygen bands.581

The spectral species concept is based on the principle that the variability582

in a spectral data cube is sufficient to identify a suite of traits in a pixel. In583

these cases, pixels are composed of multiple species with an assortment of584

different traits. The spectral species concept has been broadened to that of585

“spectranomics”, which is “an approach to conceptually and geographically586
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link plant canopy species and their functional traits to their spectral-optical587

properties” (Asner & Martin, 2016). Broadening “spectranomics” has bene-588

fit for biodiversity assessment across different organizational levels, another589

area in which the spectral species concept could contribute.590

591

While differences in traits identify different species, they can also describe592

patterns at different levels of ecological organization: habitat, community,593

ecosystem. In Ustin & Gamon (2010), the concept of “plant optical types”594

is based on their spectral attributes, without any direct reference to species595

or traits. By relating these optical types to specific traits (e.g. leaf and596

canopy resources allocated to productivity) these optical types acquire the597

definition of plant functional types. Just as actual plant species change,598

the spectral species concept must be dynamic and change. As the range599

of applications increase, the range of spectral patterns will increase (e.g.,600

including phenological events like mass flowering or senescent states) (Poyry601

et al., 2018).602

Understanding the interactions between biodiversity and ecological/envi-603

ronmental drivers is difficult (Kreft & Jetz, 2007). From this point of view,604

collecting exploratory remote sensing data on environmental heterogeneity605

across large geographical extents is relatively simple and combining that in-606

formation with changing patterns of functional traits could improve species607

identification, mapping and monitoring of potential diversity hotspots (Skid-608

more et al., 2015; Asner et al., 2017).609

As biodiversity research expands to global ecosystems, there are many610

questions unresolved. Both ecological sciences and Earth observation tech-611

nologies are still in maturing phases of development. In this paper, we clari-612

fied the links between the spectral species concept, optical types and optical613

traits, and their analogy with ecological dimensions including species, func-614

tional types and functional traits, as well as the mechanistic link between615

biophysical properties of vegetation and what is usually expressed as spectral616

signatures, corresponding to species. The relevance of discrete approaches,617

and their complementarity with continuous approaches was also highlighted.618

As stressed in this paper, important advances have been made in under-619

standing how the spectral signature relates to biodiversity and where there620

is untapped potential to further disentangle these connections. While one621

should not overestimate the capacity of remote sensing to directly estimate622

biodiversity from space (Skidmore et al., 2021), remote sensing captures pat-623

terns of reflected or emitted electromagnetic radiation that are driven by bio-624

physical and biochemical properties of vegetation (i.e., patterns dependent625

on the optical properties of plants that are the phenotypic expressions of their626

fitness strategies). There are a wide range of scientific disciplines that include627
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all ecological subdisciplines from the population to the global biosphere, bi-628

ology, soils, hydrology, evolution and phylogenetics, optics, mathematics,629

statistics and informatics and engineering, that are necessary to understand,630

interpret, refine and improve remote sensing research. To actually develop631

and verify methods to identify and monitor global patterns of biodiversity, it632

will truly take “more than a village” but instead an engaged and committed633

international contingent of scientists, social scientists, citizen scientists, en-634

gineers, policy makers, land owners, farmers, and more, to shorten the long635

road ahead.636
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Figure 1: Some potential scenarios that can happen in optical remote sens-
ing of vegetation canopies. The graph shows sources of variation in the
relationship between species and optical types. Plants of different species
might belong to different optical types, but many other situations can also
be found. Optical types can be related to information of interest (e.g., species
or plant traits) or to irrelevant pattern (e.g., shadows, depending on the re-
search question). Scenario (a) represents a stand with individuals of only
one single species, with a similar reflectance. In scenario (b) individuals of
two species have a similar reflectance; hence they would be grouped in the
same spectral species. This is further complicated once mixing individuals
belonging to the same taxon but to different optical types (c) or individuals
of multiple species belonging to different optical types that do not follow the
species boundaries (d). What many would hope for is that plants of different
species belong to different optical types, which may happen (e). Finally, the
same plant individual can consist of different optical types showing differ-
ent spectral properties in e.g. young versus old leaves, shadow and light, or
differences in health conditions. This intra-individual mixing property will
be related to all of the previous cases (f-h). Note that a stand or individual
can pass through several of these scenarios in time (intra and interannual
variability).
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Box 1 - The spectral species algorithm at work927

The spectral species concept is grounded in an algorithm which is now ready928

available under a free and open source R package in GitHub (https://929

github.com/jbferet/biodivMapR) named biodivMapR (Féret and de Boissieu,930

2020), which is able to produce α- and β-diversity maps starting from the931

detection of spectral species based on the optical properties of vegetation in932

the field.933

Starting from a multi- or hyper-spectral image, a spectral transformation934

like a Principal Component Analysis (PCA) is performed to reduce the di-935

mensionality for further calculations (Figure 2). Based on those principal936

components explaining most of the variance, k-means clustering is applied to937

a random set of pixels in order to detect group of pixel with the same spectral938

reflectance, possibly related to single groups of individuals/canopies in the939

field that are sharing similar traits and thus that are likely to be phyloge-940

netically related (spectral species concept). The detection of spectral species941

is applied backward to the whole map defining a membership probability of942

each pixel to a certain spectral species, as based on its spectral euclidean943

distance from the centroid of the previously defined clusters. A single fi-944

nal spectral species map can be attained by using the maximum probability945

for each pixel to attain to a certain spectral species. The spectral species946

map is further divided into elementary spatial units with a higher pixel di-947

mension (hereafter simply units), in which calculation of α- and β-diversity948

can be performed, leading to crucial information on both local diversity and949

turnover. In order to attain α-diversity, Shannon’s H’ is calculated for each950

unit, while for β-diversity calculation Bray-Curtis dissimilarity is considered951

among all the possible pairs of units. The α-diversity map can be shown by952

directly taking into account Shannon’s H’ for each unit and reporting it in953

a final resampled map. Rather, the β-diversity map needs a further step to954

pass from a distance matrix to a 2D spatial representation, namely the ap-955

plication of Non metric Multidimensional Scaling (NMDS), by deciding the956

final number of reduced dimensions (in this case three in order to compose957

an RGB image). The final result will be a unitless β-diversity map in which958

different colours represent differences among species communities in space.959
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INPUT DATA SPECTRAL SPECIES OUTPUT DIVERSITY MAPS

(a) (b) (c) (d) (e)

RGB PCA a-diversity map b-diversity mapSpectral species map

Figure 2: Box 1 Figure - The spectral species algorithm phases.
The original image was acquired with the CAO AToMS imaging spec-
trometer during an airborne campaign over the CICRA experimental
site (Amazonian Peru) (https://www.amazonconservation.org/about/
mission-vision/cicra-station/). (a) corresponds to the RGB represen-
tation of an imaging spectroscopy subset. A standardized PCA is applied on
(a) and a reduced set of components is selected (b), to maximize signal cor-
responding to biological patterns on forested areas and discard noisy compo-
nents. Spectral species are defined for each pixel by applying an unsupervised
k-means clustering on the spectral space defined by selected components (c).
In this phase, a field survey recognition based on in-situ data is crucial to
define the number of singular spectral signatures (spectral species) expected.
The spectral species map is divided into elementary spatial units and the
spectral species inventory is performed for each spatial unit, by further cal-
culating Shannon’s H and Bray-Curtis metrics to derive alpha- ((d), ranging
here from minima to maxima from black to blue, green and red) and beta-
diversity ((e), in which colours represent differences among spectral species)
maps, respectively.
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