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In this article, we solve an inequality problem involving
logarithms.

Problem (Romania MO 2018). Let a, b, c be real numbers
such that 1 < b ≤ c2 ≤ a10 and

loga b+ 2 logb c+ 5 logc a = 12.

Show that

2 loga c+ 5 logc b+ 10 logb a ≥ 21.

Solution. Let logc b = k, loga c = l, loga b = m.
From 1 < b ≤ c2 ≤ a10, we have

logc b ≤ 2, loga b ≤ 10, loga c ≤ 5, (1)

i.e., 0 < k ≤ 2, 0 < m ≤ 10, 0 < l ≤ 5. The hypothesis is
now transformed to

m+
2
k
+

5
l
= 12. (2)

Noting that kl = m, (2) gets simplified to

2l+ 5k = m(12− m). (3)

The goal now becomes: show that

2l+ 5k+ 10
m

≥ 21. (4)
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In view of (3), the goal (4) further simplifies to:

m(12− m) + 10
m

≥ 21,

which in turn is equivalent to

m3 − 12m2 + 21m− 10 ≤ 0. (5)

To see why (5) is true, we observe that m− 1 is a factor of the polynomial on the left side, for
1− 12+ 21− 10 = 0. After performing the relevant division, we get

m3 − 12m2 + 21m− 10 = (m− 1)(m2 − 11m+ 10),

and we see that m− 1 is a factor of m2 − 11m+ 10 as well, for 1− 11+ 10 = 0. We have:

m2 − 11m+ 10 = (m− 1)(m− 10).

Hence

m3 − 12m2 + 21m− 10

= (m− 10)(m− 1)2

≤ 0, since 0 < m ≤ 10.

The proof is now complete. □
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