On a method for Solving Cubic Equations

BIPLAB ROY

In this short note, we discuss a method to solve cubic equations. It is based on a method of factorisation developed by Abdul Halim Sk., a school teacher of West Bengal, so we call it 'Halim's method of factorisation.'

It involves a certain degree of hit- $\&$-trial (or 'guesswork'), and may be applied to cubic polynomials of the forms $x^{3}+b x^{2}+c$ and $x^{3}+b x+c$. Here, b and c are integers.

Let us see how the approach works for the polynomial $x^{3}+b x+c$. Suppose that

$$
x^{3}+b x+c=(x+p)\left(x^{2}+q x+r\right) .
$$

The expression on the right side is equal to $x^{3}+(q+p) x^{2}+(r+p q) x+p r$. As this is identically equal to $x^{3}+b x+c$, we may equate coefficients of like powers of x on both sides. We get:

$$
\begin{aligned}
q+p & =0, \\
r+p q & =b, \\
p r & =c .
\end{aligned}
$$

These equalities yield $q=-p$ and $b=r-p^{2}$. Therefore we can rewrite the given polynomial as

$$
x^{3}+b x+c=x^{3}+\left(r-p^{2}\right) x+p r .
$$

Now we apply the above to solve a cubic equation.

Keywords: Cubic equation, polynomial, factorisation

The general form of a cubic equation is $a x^{3}+3 b x^{2}+3 c x+d=0$.

We first reduce it to the standard form by the transformation $y=a x+b$. This removes the quadratic term, and we are left with the equation $y^{3}+3 H y+G=0($ for some $H, G)$.

We factorize this using Halim's method:

$$
\begin{aligned}
y^{3}+3 H y+G & =(y+p)\left(y^{2}-p y+r\right) \\
\text { where } 3 H & =r-p^{2} \text { and } G=p r .
\end{aligned}
$$

For this, we must look for a pair of numbers p, r such that $3 H=r-p^{2}$ and $G=p r$. This involves a certain amount of trial and error.

If we are easily able to find p and r, then by solving the linear equation $y+p=0$ and the quadratic equation $y^{2}-p y+r=0$, we find all three roots of $y^{3}+3 H y+G=0$:

$$
-p, \frac{p \pm \sqrt{p^{2}-4 r}}{2}
$$

Finally, from the relation $y=a x+b$, we get all the roots of the equation $a x^{3}+3 b x^{2}+3 c x+d=0$.

We demonstrate this using two examples.

Example 1

Take the equation $x^{3}-6 x-9=0$. We must look for a pair of numbers p, r such that $-6=r-p^{2}$ and $-9=p r$. By inspection we find $r=3$ and $p=-3$, because $-9=(-3) \times 3$ and $-6=3-3^{2}$. So:

$$
\begin{aligned}
& x^{3}-6 x-9=0 \\
& \Longrightarrow x^{3}-\left(3^{2}-3\right) x-9=0 \\
& \Longrightarrow(x-3)\left(x^{2}+3 x+3\right)=0 .
\end{aligned}
$$

So the roots of the given equation are

$$
\left\{3, \frac{-3 \pm i \sqrt{3}}{2}\right\}
$$

Example 2

Take the equation $x^{3}-12 x+65=0$. We must look for a pair of numbers p, r such that $-12=r-p^{2}$ and $65=p r$. By inspection we find $r=13$ and $p=5$, because $65=5 \times 13$ and $12=5^{2}-13$. So:

$$
\begin{aligned}
& x^{3}-12 x+65=0 \\
& \Longrightarrow x^{3}-\left(5^{2}-13\right) x+65=0 \\
& \Longrightarrow(x+5)\left(x^{2}-5 x+13\right)=0 .
\end{aligned}
$$

From $x+5=0$ we get $x=-5$, and from $x^{2}-5 x+13=0$ we get $x=\frac{1}{2}(5 \pm 3 i \sqrt{3})$.
So the roots of the given equation are

$$
\left\{-5, \frac{5 \pm 3 i \sqrt{3}}{2}\right\}
$$

Closing remarks

Will this method always work? Given the cubic equation $y^{3}+3 H y+G$, it should be clear that the success of this approach depends on our easily finding a pair of numbers p and r such that $3 H=r-p^{2}$ and $G=p r$.
As noted above, this requires trial and error. Unfortunately, there is no straightforward way to find such a pair of numbers. If we try to do it systematically, by setting it up as an equation, we end up with the very equation that we had started with.

From $x-3=0$ we get $x=3$, and from $x^{2}+3 x+3=0$ we get $x=\frac{1}{2}(-3 \pm i \sqrt{3})$.

BIPLAB ROY works as an assistant teacher in Mathematics at a Government sponsored school of West Bengal. He has a M.Sc. in Mathematics, and a B.Ed. and MLIS. He has written two books on popular mathematics in Bengali - Adhunik Bongo Goniter Astobosu and Gonit Prosonge. He loves to study the History of Mathematics. He may be contacted at broy.at13@gmail.com.

