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In this short note, we discuss a method to solve cubic
equations. It is based on a method of factorisation
developed by Abdul Halim Sk., a school teacher of

West Bengal, so we call it ‘Halim’s method of factorisation.’

It involves a certain degree of hit-&-trial (or ‘guesswork’),
and may be applied to cubic polynomials of the forms
x3 + bx2 + c and x3 + bx+ c. Here, b and c are integers.

Let us see how the approach works for the polynomial
x3 + bx+ c. Suppose that

x3 + bx+ c = (x+ p)(x2 + qx+ r).

The expression on the right side is equal to
x3 + (q+ p)x2 + (r+ pq)x+ pr. As this is identically equal
to x3 + bx+ c, we may equate coefficients of like powers of x
on both sides. We get:

q+ p = 0,
r+ pq = b,

pr = c.

These equalities yield q = −p and b = r− p2. Therefore we
can rewrite the given polynomial as

x3 + bx+ c = x3 + (r− p2)x+ pr.

Now we apply the above to solve a cubic equation.
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The general form of a cubic equation is
ax3 + 3bx2 + 3cx+ d = 0.

We first reduce it to the standard form by the
transformation y = ax+ b. This removes the
quadratic term, and we are left with the equation
y3 + 3Hy+ G = 0 (for some H,G).

We factorize this using Halim’s method:

y3 + 3Hy+ G = (y+ p)(y2 − py+ r),

where 3H = r− p2 and G = pr.

For this, we must look for a pair of numbers p, r
such that 3H = r− p2 and G = pr. This involves
a certain amount of trial and error.

If we are easily able to find p and r, then by solving
the linear equation y+ p = 0 and the quadratic
equation y2 − py+ r = 0, we find all three roots of
y3 + 3Hy+ G = 0:

−p, p±
√

p2 − 4r
2

.

Finally, from the relation y = ax+ b, we get all the
roots of the equation ax3 + 3bx2 + 3cx+ d = 0.

We demonstrate this using two examples.

Example 1
Take the equation x3 − 6x− 9 = 0. We must look
for a pair of numbers p, r such that −6 = r− p2

and −9 = pr. By inspection we find r = 3 and
p = −3, because −9 = (−3)× 3 and
−6 = 3 − 32. So:

x3 − 6x− 9 = 0

=⇒ x3 − (32 − 3)x− 9 = 0

=⇒ (x− 3)(x2 + 3x+ 3) = 0.

From x− 3 = 0 we get x = 3, and from
x2 + 3x+ 3 = 0 we get x = 1

2
(−3 ± i

√
3).

So the roots of the given equation are
{

3, −3 ± i
√

3
2

}
.

Example 2
Take the equation x3 − 12x+ 65 = 0. We must
look for a pair of numbers p, r such that
−12 = r− p2 and 65 = pr. By inspection we find
r = 13 and p = 5, because 65 = 5 × 13 and
12 = 52 − 13. So:

x3 − 12x+ 65 = 0

=⇒ x3 − (52 − 13)x+ 65 = 0

=⇒ (x+ 5)(x2 − 5x+ 13) = 0.

From x+ 5 = 0 we get x = −5, and from
x2 − 5x+ 13 = 0 we get x = 1

2
(5 ± 3i

√
3).

So the roots of the given equation are
{
−5, 5 ± 3i

√
3

2

}
.

Closing remarks
Will this method always work? Given the cubic
equation y3 + 3Hy+ G, it should be clear that the
success of this approach depends on our easily
finding a pair of numbers p and r such that
3H = r− p2 and G = pr.

As noted above, this requires trial and error.
Unfortunately, there is no straightforward way
to find such a pair of numbers. If we try to do it
systematically, by setting it up as an equation,
we end up with the very equation that we had
started with.
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