On a method for Solving Cubic Equations

BIPLAB ROY

n this short note, we discuss a method to solve cubic equations. It is based on a method of factorisation developed by Abdul Halim Sk., a school teacher of West Bengal, so we call it 'Halim's method of factorisation.'

It involves a certain degree of hit-&-trial (or 'guesswork'), and may be applied to cubic polynomials of the forms $x^3 + bx^2 + c$ and $x^3 + bx + c$. Here, *b* and *c* are integers.

Let us see how the approach works for the polynomial $x^3 + bx + c$. Suppose that

$$x^{3} + bx + c = (x + p)(x^{2} + qx + r).$$

The expression on the right side is equal to $x^3 + (q + p)x^2 + (r + pq)x + pr$. As this is identically equal to $x^3 + bx + c$, we may equate coefficients of like powers of x on both sides. We get:

$$q + p = 0,$$

$$r + pq = b,$$

$$pr = c.$$

These equalities yield q = -p and $b = r - p^2$. Therefore we can rewrite the given polynomial as

$$x^{3} + bx + c = x^{3} + (r - p^{2})x + pr.$$

Now we apply the above to solve a cubic equation.

Keywords: Cubic equation, polynomial, factorisation

58

The general form of a cubic equation is $ax^3 + 3bx^2 + 3cx + d = 0.$

We first reduce it to the standard form by the transformation y = ax + b. This removes the quadratic term, and we are left with the equation $y^3 + 3Hy + G = 0$ (for some *H*, *G*).

We factorize this using Halim's method:

$$y^{3} + 3Hy + G = (y + p)(y^{2} - py + r),$$

where $3H = r - p^{2}$ and $G = pr$.

For this, we must look for a pair of numbers p, r such that $3H = r - p^2$ and G = pr. This involves a certain amount of trial and error.

If we are easily able to find *p* and *r*, then by solving the linear equation y + p = 0 and the quadratic equation $y^2 - py + r = 0$, we find all three roots of $y^3 + 3Hy + G = 0$:

$$-p, \ \frac{p \pm \sqrt{p^2 - 4r}}{2}$$

Finally, from the relation y = ax + b, we get all the roots of the equation $ax^3 + 3bx^2 + 3cx + d = 0$.

We demonstrate this using two examples.

Example 1

Take the equation $x^3 - 6x - 9 = 0$. We must look for a pair of numbers *p*, *r* such that $-6 = r - p^2$ and -9 = pr. By inspection we find r = 3 and p = -3, because $-9 = (-3) \times 3$ and $-6 = 3 - 3^2$. So:

$$x^{3} - 6x - 9 = 0$$

$$\implies x^{3} - (3^{2} - 3)x - 9 = 0$$

$$\implies (x - 3)(x^{2} + 3x + 3) = 0$$

From x - 3 = 0 we get x = 3, and from $x^2 + 3x + 3 = 0$ we get $x = \frac{1}{2}(-3 \pm i\sqrt{3})$. So the roots of the given equation are

$$\left\{3, \ \frac{-3\pm i\sqrt{3}}{2}\right\}.$$

Example 2

Take the equation $x^3 - 12x + 65 = 0$. We must look for a pair of numbers *p*, *r* such that $-12 = r - p^2$ and 65 = pr. By inspection we find r = 13 and p = 5, because $65 = 5 \times 13$ and $12 = 5^2 - 13$. So:

$$x^{3} - 12x + 65 = 0$$

$$\implies x^{3} - (5^{2} - 13)x + 65 = 0$$

$$\implies (x + 5)(x^{2} - 5x + 13) = 0$$

From x + 5 = 0 we get x = -5, and from $x^2 - 5x + 13 = 0$ we get $x = \frac{1}{2}(5 \pm 3i\sqrt{3})$.

So the roots of the given equation are

$$\left\{-5, \frac{5\pm 3i\sqrt{3}}{2}\right\}.$$

Closing remarks

Will this method always work? Given the cubic equation $y^3 + 3Hy + G$, it should be clear that the success of this approach depends on our easily finding a pair of numbers *p* and *r* such that $3H = r - p^2$ and G = pr.

As noted above, this requires trial and error. Unfortunately, there is no straightforward way to find such a pair of numbers. If we try to do it systematically, by setting it up as an equation, we end up with the very equation that we had started with.

BIPLAB ROY works as an assistant teacher in Mathematics at a Government sponsored school of West Bengal. He has a M.Sc. in Mathematics, and a B.Ed. and MLIS. He has written two books on popular mathematics in Bengali — *Adhunik Bongo Goniter Astobosu* and *Gonit Prosonge*. He loves to study the History of Mathematics. He may be contacted at broy.at13@gmail.com.