A rare example

A Surprising Fact about Triangles with a 60 degree Angle

Is the converse of a statement always true?

Ever posed this question to a class and then scanned your memory for good examples to clinch your argument? Here is one you could use.

In the study of triangle geometry we get used to various pairs of theorems about isosceles triangles. Here are a few such pairs of statements, all with reference to a triangle $A B C$. Note their common element: the words 'and conversely'.
(1) "If $A B=A C$ then $\angle B=\angle C$; and conversely." (That is, if $\angle B=\angle C$ then $A B=A C$.)
(2) "If $A B=A C$ then the medians from B and C have equal length; and conversely."
(3) "If $A B=A C$ then the altitudes from B and C have equal length; and conversely."
But occasionally we come across statements that go counter to this pattern; that is, the 'and conversely' fails. Here is one such. Given a $\triangle A B C$, let the internal bisectors of $\angle B$ and $\angle C$ meet each other at I (the incentre of the triangle), and let them meet the

Suppose $A B=A C$. Then $\triangle B Q C \cong \triangle C R B$ ('ASA' congruence); so $C Q=B R$. Also, $\triangle B I R \cong \triangle C I Q$ ('SAS' congruence).

Hence $I Q=I R$.

Fig. 1

If points A, R, I, Q are concyclic, then $I Q=I R$.

Fig. 2
opposite sides ($A C$ and $A B$) at Q and R respectively. For this configuration the following is true and easy to prove: If $A B=A C$, then $I Q=I R$ (see Figure 1; the proof is given alongside).

Having seen so many statements about isosceles triangles of the form "If p then q " in which the propositions p and q can exchange places without any loss, we may now guess the following 'proposition': If $I Q=I R$, then $A B=A C$. But this turns out to be false!

What might a triangle look like in which $I Q=I R$ but $A B \neq A C$? To produce such a triangle we use a standard theorem in circle geometry: Chords of a circle which subtend equal angles at a point on the circumference of the circle have equal length.

Suppose that quadrilateral ARIQ is cyclic (Figure 1). Since $\angle I A R=A / 2=\angle I A Q$, chords $I R$ and $I Q$ subtend equal angles at A; hence they have equal length. Therefore: If points A, R, I, Q are concyclic, then $I Q=I R$. (See Figure 2.)

Under what conditions will A, R, I, Q be concyclic? It is known that $\angle B I C=90^{\circ}+A / 2$. Hence $\angle Q I R=90^{\circ}+A / 2$. Now a quadrilateral is cyclic if and only if the sum of each pair of opposite angles is 180°. Hence $A R I Q$ is cyclic if and only if $A+90^{\circ}+A / 2=180^{\circ}$, which yields $A=60^{\circ}$. So: If $\angle A=60^{\circ}$ then $I Q=I R$. And this holds regardless of the relation between sides $A B$ and $A C$! Hence from ' $I Q=I R$ ' we cannot conclude that $A B=A C$. What we can conclude is this: $I f I Q=I R$, then either $A B=A C$, or $\angle A=60^{\circ}$, or both.

This may be rewritten as: If $I Q=I R$, then either $A B=A C$, or ARIQ is cyclic, or both. We prove it in this form. We use the 'sine rule' which states that in any triangle, the ratio of the side to the sine of the
opposite angle is the same for the three $\operatorname{sides}(a / \sin A=b / \sin B=c / \sin C)$. We call this common ratio the "side by sine ratio" of the triangle.

Examine $\triangle A R I$ and $\triangle A Q I$. The side by sine ratio for $\triangle A R I$ is $I R / \sin A / 2$, and for $\triangle A Q I$ it is $I Q / \sin A / 2$. These two ratios are equal, because $I Q=I R$. So the two triangles have the same side by sine ratio. This means in particular that $A I / \sin \angle A Q I=A I / \sin \angle A R I$, and hence that $\sin \angle A Q I=\sin \angle A R I$.

Two angles between 0° and 180° have equal sines just when they are equal or supplementary. Hence, either $\angle A Q I=\angle A R I$, or $\angle A Q I+\angle A R I=180^{\circ}$. The first possibility holds when $A B=A C$, and the second possibility when $A R I Q$ is cyclic. Thus our claim is proved.

Acknowledgement

The editors express their grateful thanks to Mr Sankararaman B of The Valley School, Bangalore, for bringing this problem to their attention.

nunioer
 arossword-2

Clues Across

3: 2D plus 38
5: 5D plus 5
7: Internal angle of an equilateral triangle
8: Add 10 to 2D times 11
9: Number of squares on a chess board
10: 24D times 3 with the digits mixed up
12: $7 \mathrm{~A}+9 \mathrm{~A}+18 \mathrm{~A}+20 \mathrm{~A}+1 \mathrm{D}$
14: A Pythagorean triple: 313, 25, ------
16: 3D minus one digit of 7A
18: Last two digits of 15D plus 5
19: 10A minus 13D
20: Circumference of a circle with radius $1 \mathrm{D} / 3$
21: 5D jumbled up
23: Two thirds of 4D

Clues Down

1: Cube root of 9261
2: The largest perfect square below 100
3: An internal angle of a regular Pentagon
4: Largest three digit number
5: 14A minus 100
6: Largest number formed with $5,6,7$
11: 1 D in reverse times 9 plus 13
13: A full circle
14: 20 A times 8 plus 10

		1				2		
	3		4		5		6	
7			8				9	
	10	11			12	13		
	14		15		16		17	
18			19				20	
	21	22			23	24		

15: 12A plus 6
16: 5A minus 1D
17: Three even digits in order
22: 24D divided by 3 plus 3
24: LCM of 3, 9 and 21

