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A rare example

A Surprising Fact
about Triangles with a
60 degree Angle
Is the converse of a statement always true?

Ever posed this question to a class and then scanned your memory for good
examples to clinch your argument? Here is one you could use.

C ⊗ MαC

In the study of triangle geometry we get used to various pairsof theorems about isosceles triangles. Here are a few such
pairs of statements, all with reference to a triangle ABC. Note

their common element: the words ‘and conversely’.

(1) ‘‘If AB = AC then � B = � C; and conversely.’’ (That is, if
� B = � C then AB = AC.)

(2) ‘‘If AB = AC then the medians from B and C have equal
length; and conversely.’’

(3) ‘‘If AB = AC then the altitudes from B and C have equal
length; and conversely.’’

But occasionally we come across statements that go counter to
this pattern; that is, the ‘and conversely’ fails. Here is one such.
Given a�ABC, let the internal bisectors of � B and � Cmeet each
other at I (the incentre of the triangle), and let themmeet the
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Fig. 1

Fig. 2

opposite sides (AC and AB) at Q and R respectively. For this configuration the following is true and easy
to prove: If AB = AC, then IQ = IR (see Figure 1; the proof is given alongside).

Having seen so many statements about isosceles triangles of the form ‘‘If p then q’’ in which the
propositions p and q can exchange places without any loss, we may now guess the following
‘proposition’: If IQ = IR, then AB = AC. But this turns out to be false!

What might a triangle look like in which IQ = IR but AB �= AC? To produce such a triangle we use a
standard theorem in circle geometry: Chords of a circle which subtend equal angles at a point on the
circumference of the circle have equal length.

Suppose that quadrilateral ARIQ is cyclic (Figure 1). Since � IAR = A/2 = � IAQ, chords IR and IQ subtend
equal angles at A; hence they have equal length. Therefore: If points A, R, I, Q are concyclic, then IQ = IR.
(See Figure 2.)

Under what conditions will A, R, I, Q be concyclic? It is known that � BIC = 90◦ + A/2. Hence
� QIR = 90◦ + A/2. Now a quadrilateral is cyclic if and only if the sum of each pair of opposite angles is
180◦. Hence ARIQ is cyclic if and only if A+ 90◦ + A/2 = 180◦, which yields A = 60◦. So: If � A = 60◦ then
IQ = IR. And this holds regardless of the relation between sides AB and AC! Hence from ‘IQ = IR’we
cannot conclude that AB = AC. What we can conclude is this: If IQ = IR, then either AB = AC, or
� A = 60◦, or both.

This may be rewritten as: If IQ = IR, then either AB = AC, or ARIQ is cyclic, or both.We prove it in this
form. We use the ‘sine rule’which states that in any triangle, the ratio of the side to the sine of the
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opposite angle is the same for the three sides (a/ sinA = b/ sinB = c/ sin C). We call this common ratio
the ‘‘side by sine ratio’’ of the triangle.

Examine�ARI and�AQI. The side by sine ratio for�ARI is IR/ sinA/2, and for�AQI it is IQ/ sinA/2.
These two ratios are equal, because IQ = IR. So the two triangles have the same side by sine ratio. This
means in particular that AI/ sin � AQI = AI/ sin � ARI, and hence that sin � AQI = sin � ARI.

Two angles between 0◦ and 180◦ have equal sines just when they are equal or supplementary. Hence,
either � AQI = � ARI, or � AQI+ � ARI = 180◦. The first possibility holds when AB = AC, and the second
possibility when ARIQ is cyclic. Thus our claim is proved.
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