Classification of Indian cities using Google Earth Engine

Agarwal, Shivani and Nagendra, Harini (2019) Classification of Indian cities using Google Earth Engine. Journal of Land Use Science. pp. 1-16. ISSN 1747-4248

[img] Text - Published Version
Restricted to Repository staff only

Download (3MB) | Request a copy


The rapid expansion of cities and the impacts of urbanization on local and global environmental factors such as biodiversity and climate change are of great concern. Reliable rapid approaches for mapping the expansion of cities are of increasing importance today. In this paper, we explore the use of Google Earth Engine to classify land cover in Indian cities from Landsat imagery, using a Random Forest approach, a robust per-pixel approach to supervised classification which generates classification trees based on the band values of the desired classes. Cities were classified into four classes – urban, vegetation, waterbody, and fallow land. We developed global and individual random forest models and used them to classify India’s 10 largest cities. Our results show that the global model produces accuracies greater to individual models, with an overall classification accuracy greater than 80% for each city. This research provides an empirically grounded method to map cities.

Item Type: Article
Authors: Agarwal, Shivani and Nagendra, Harini
Uncontrolled Keywords: Urbanization, land cover, Google Earth Engine, supervised classification, random forest classification tree, Landsat images
Subjects: Natural Sciences > Earth sciences
Divisions: Azim Premji University > School of Development
Full Text Status: Restricted
Publisher URL:

Actions (login required)

View Item View Item