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Aphrase used very often in higher mathematics

is ‘proof by contradiction.’ A vast number of results
are proved using this approach. Readers of At Right

Angles would have seen this proof technique used numerous
times.

A less familiar phrase is ‘proof by the contrapositive.’ But
appearances are deceptive; though the phrase itself is not
used so often, the approach is very widely used.

Both of these are examples of indirect proof techniques. In this
edition of ‘How to Prove It,’ we dwell on proof by
contradiction and proof by the contrapositive and explain
what is ‘indirect’ about them.

Matters of notation
We shall use the following standard notation throughout this
article.

• If integers a, b, c (c ̸= 0) are such that a and b leave the
same remainder under division by c, then we write
a ≡ b (mod c). Otherwise put: a ≡ b (mod c) means
that a − b is a multiple of c. Examples:
27 ≡ 7 (mod 5); 53 ≡ 19 (mod 17).

• If integers a, b (a ̸= 0) are such that a is a divisor of b,
we write: a | b. Examples: 7 | 21; 17 | 85.

• Negation is indicated as follows: 13 ̸≡ 2 (mod 5);
5̸ | 12; 2̸ | 3.
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significance in higher 
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Well-known facts from elementary number
theory. We shall make repeated use of some
well-known (and easily proved) results from
elementary number theory, namely:

• If n is any integer, then n2 ≡ 0 (mod 3) or
n2 ≡ 1 (mod 3).

• In particular, if n is not a multiple of 3, then
n2 ≡ 1 (mod 3).

• If n is any integer, then n2 ≡ 0 (mod 4) or
n2 ≡ 1 (mod 4).

• In particular, if n is odd, then
n2 ≡ 1 (mod 4).

• There are no squares of the following forms:
2 (mod 3), 2 (mod 4), 3 (mod 4).

Direct proof and indirect proof

Direct proof. To start with, let us explain what is
meant by ‘direct proof.’ Let us say that some
statement or proposition q needs to be proved.
The direct approach is to start with some
statement p of an elementary and basic nature that
is clearly true, and then go through a series of
deductive steps which yield a sequence of
statements, each of which is implied by the
previous one, culminating in the statement q to be
proved. That is, we start with some statement p
whose truth is beyond dispute, then move through
a sequence of statements p1, p2, p3, . . . , pn, q as
follows:

p =⇒ p1, p1 =⇒ p2, p2 =⇒ p3, . . . ,

pn =⇒ q.

At the end of this chain of reasoning, proposition
q has been proved, as required.

Rather then a standalone proposition that needs to
be proved, we may be faced with the task of
proving an implication, say p =⇒ q. That is, we
need to show that if proposition p is true, then
proposition q is true as well. Observe the ‘if then’
nature of what is to be proved.

In some cases, we may be able to show the desired
implication in a single step. In case this proves
difficult, we may opt to interpose a sequence of

propositions p1, p2, p3, …, pn between p and q,
and then establish the following implications:

p =⇒ p1, p1 =⇒ p2, p2 =⇒ p3, . . . ,

pn =⇒ q.

The point of bringing in the additional
propositions is that the in-between implications
may be easier to establish. So, rather than take one
large step, we take a number of relatively small
steps, each of which is not too difficult in itself. At
the end of this line of reasoning, the desired
implication will have been proved. This too is a
direct proof.

What is ‘direct’ about these approaches is that we
have accomplished the desired task ‘directly.’ In
the first situation, proposition q had to be proved;
we have done so. In the second situation, the
implication p =⇒ q had to be proved; once
again, we have done so.

Indirect proof. The path taken by an indirect
proof is very different. It rests on the basic premise
that a proposition is either true or false. This means
that if a proposition is not true, it must be false; if
it is not false, then it must be true.

This offers another way of proving a given
proposition q to be true: show that it cannot be
false! How do we do this? One way would be to
assume q to be false, take that to be our starting
point, and explore its consequences. If at some
point we come across a consequence that we
definitely know to be false, or a consequence that
contradicts something we proved earlier, then we
can conclude that the assumption made at the
start (i.e., that q is false) is itself false. So q cannot
be false and therefore it must be true!

Observe what has taken place here: the
assumption that q is false has caused us to trip
ourselves (to put it more colourfully, we have
tripped on our own shoelaces), and therefore we
are forced to conclude that there must be
something wrong with this assumption. This
manner of proceeding is known as proof by
contradiction.

A similar line of reasoning can be used if we wish
to show the truth of the implication p =⇒ q.
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We assume that q is false and check whether we
can show, in some way or the other, that p too is
false. That is, the falsity of q leads to the falsity of
p. But we have already been told that p is true; this
is a given. From this, we conclude that q cannot
be false; therefore, it must be true. This manner of
proceeding is known as proof by the contrapositive.

It should be clear now why these two approaches
are described as ‘indirect.’

Examples of direct proof
(i) Prove that if m is an odd integer, then

m2 ≡ 1 (mod 8).

Solution. An odd integer m can be written
in the form 2n + 1 where n is an integer.
Squaring this expression, we get:

m2 = (2n + 1)2

= 4n2 + 4n + 1
= 4n(n + 1) + 1.

In the last line, we focus our attention on the
term n(n + 1). Observe that it is a product
of a pair of consecutive integers. One of
these integers must be even, so their product
is necessarily even. Hence 8 | 4n(n + 1). It
follows that m2 ≡ 1 (mod 8). �

(ii) Prove the arithmetic mean-geometric mean
(AM-GM) inequality: if a and b are any two
positive real numbers, then 1

2(a + b) ≥
√

ab.
(Here, 1

2(a + b) is the AM of a and b, while√
ab is the GM of a and b.)

Solution. We shall start with a statement
that is clearly true: the square of any real
number is non-negative. Applying this
statement to the particular real number√

a −
√

b, we deduce that
(√

a −
√

b
)2

≥ 0.

Expanding the bracketed term and
simplifying, we get:

a + b − 2
√

ab ≥ 0,

∴ a + b
2

≥
√

ab. �

(iii) Prove that the cube root of 3 exceeds the square
root of 2. (This is generally asked as a
question: Which is larger, 21/2 or 31/3?)

Solution. We shall start with a statement
that is clearly true: 9 > 8. Taking the (real)
sixth roots of both sides, we deduce that
91/6 > 81/6, hence

(
32)1/6

>
(
23)1/6

,

∴ 31/3 > 21/2. �

(iv) In △ABC, sides AB and AC have equal
length. Prove that �ABC = �ACB.

Solution. We give the original proof from
Euclid’s Elements (with the language
modified slightly, so as to make it easier to
understand).

It is very important to note the placement of
this theorem in the original sequence of
results proved by Euclid. The only congruence
theorem available to us is what we now call
side-angle-side (‘SAS’) congruence. In
particular, the angle-side-angle (‘ASA’) and
side-side-side (‘SSS’) congruence theorems
are not available as they are themselves
proved later on. The ingenuity of Euclid’s
proof is striking.

Let ABC be isosceles with AB = AC. Extend
sides AB and AC to points D and E
respectively such that AD = AE. (See
Figure 1.)

A

B C

D E

Figure 1.
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By the SAS congruence theorem, △ABE is
congruent to △ACD; for: AB = AC,
AE = AD, and the two triangles have a
shared included angle, namely �A.
Therefore BE = CD and �AEB = �ADC.

In the same way, we see that △BCD is
congruent to △CBE; for: BD = CE (because
AD = AE and AB = AC), CD = BE (just
proved) and �BDC = �CEB (just proved).
Therefore �DBC = �ECB.

Since the straight angle at B equals the
straight angle at C, it follows by subtraction
that �ABC = �ACB. �

Remark. There is another direct proof of this
result which is not in Euclid’s original text; it
was found by Pappus a few centuries later;
see [1]. It is a very ingenious proof but also
counterintuitive. For example, it regards
△ABC as a distinct object from △ACB. For
this reason, it has been described by some
authors as “conceptually difficult.”

Examples of indirect proof
(i) Prove that the integer 80000000000007 is

not a perfect square.

Solution. A direct proof of this statement
would involve computation of the square
root of the given integer. The indirect proof
is shorter; we make use of the first result
proved in the previous section on direct
proof: if m is an odd integer, then
m2 ≡ 1 (mod 8). Note that this implies that
any odd square is of the form 1 (mod 8).

Observe that the given integer is odd, and
also observe that under division by 8, it
leaves remainder 7. However, an odd square
leaves remainder 1 under division by 8. It
follows that 80000000000007 is not a
perfect square. �

(ii) Prove that the square root of 2 is an irrational
number.

Solution. Just for fun, we give a proof that is
slightly different from Euclid’s original
proof. (However, it is essentially modelled
on that proof.)

Suppose that the square root of 2 is a
rational number, say

√
2 = a/b where a and

b are positive integers. Naturally, we may
suppose that a and b share no common
factors other than 1, i.e., a, b are coprime.

From the relation
√

2 = a/b we get, by
squaring and simplifying, a2 = 2b2.

Now we ask: is either a or b divisible by 3?
Suppose that 3 | a. Then the relation
a2 = 2b2 leads us to conclude that 3 | b as
well. (Please fill in the details of the
reasoning used to draw this conclusion.) But
then 3 | a and 3 | b, contrary to what we
said above (that a and b are coprime).
Hence a is not divisible by 3. If we suppose
that 3 | b, then by following the same
reasoning, we are led to conclude that 3 | a,
and this again goes counter to what we said
above; hence b is not divisible by 3. It
follows that neither a nor b is divisible by 3.

The last statement implies that
a2 ≡ 1 (mod 3) and b2 ≡ 1 (mod 3). From
the second of these statements, we deduce
that 2b2 ≡ 2 (mod 3). But this contradicts
the statement that a2 = 2b2, so we reach a
contradictory state of affairs. It follows that
the square root of 2 is not a rational
number. �

(iii) Prove that if a, b, c are odd integers, then the
equation ax2 + bx + c = 0 has irrational
roots. Otherwise put: if a, b, c are odd
integers, then the expression ax2 + bx + c
cannot be factorised over the rational numbers.

Solution. The roots of the equation
ax2 + bx + c = 0 are the two quantities

−b ±
√

D
2a

,

where D = b2 − 4ac is the discriminant. As
a, b, c are integers, the roots are rational if
and only if D is a perfect square. Expressed
negatively, the roots are irrational if and
only if D is not a perfect square.

So we need to establish that b2 − 4ac is not a
perfect square. We need to do so under the
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hypothesis that a, b, c are all odd integers.
Suppose this is not so; i.e., suppose that
b2 − 4ac = d2, where d is an integer. Note
that d2 is odd, and therefore so is d. We now
have:

b2 − d2 = 4ac.

We now use the following (proved above): if
m is an odd integer, then m2 ≡ 1 (mod 8).
This fact implies that 8 | b2 − d2.

On the other hand, the quantity 4ac is of the
form 4 × an odd integer, which means that
it cannot be a multiple of 8; indeed, we have
4ac ≡ 4 (mod 8).

This means that the equality b2 − d2 = 4ac
cannot hold. Hence the supposition that the
discriminant b2 − 4ac is a perfect square
cannot hold. It follows that the roots of the
given equation are irrational. �

(iv) Consider any three distinct perfect squares
in arithmetic progression. Prove that the
common difference of the AP is a multiple
of 24.

Solution. Let the three squares be a2, b2 and
c2, where a2 < b2 < c2. As they are in AP,
we have b2 − a2 = c2 − b2, i.e.,
2b2 = a2 + c2, which also implies that
c2 = 2b2 − a2. Let d be the common
difference of the AP.

We may as well suppose that a, b, c are
coprime. For, if they have divisors in
common other than 1, we can divide all
three of a, b, c by the common divisor and
prove the proposition for the smaller
squares. If proved, the proposition will then
apply as well to the original squares.

We first focus attention on a. Suppose that a
is even. If b too is even, then from the
relation c2 = 2b2 − a2, it follows that c too is
even. However, we had already supposed that
a, b, c are coprime, so the possibility of all
three of a, b, c being even is not allowed.
Next, suppose that b is odd. In that case we

have b2 ≡ 1 (mod 4), which means that
d ≡ 1 (mod 4); but this leads to
c2 ≡ 2 (mod 4). However, no square is of
this form. As both the possibilities (b even, b
odd) have led to contradictions, we are forced
to conclude that a is not even; hence a is odd.

Now we focus attention on b. If b is even,
then the relation c2 = 2b2 − a2 implies that
c2 ≡ −1 (mod 4); but this is not possible as
no square is of this form. It follows that b
cannot be even. Hence b is odd. This proves
that c is odd as well (again using the relation
c2 = 2b2 − a2). That is, all three of a, b, c are
odd. This implies that all three of a2, b2, c2

are of the form 1 (mod 8), hence d is a
multiple of 8.

We again focus attention on a. Suppose that
3 | a. If 3 | b as well, then by virtue of the
relation c2 = 2b2 − a2, it follows that 3 | c
too. However, we had already supposed that
a, b, c are coprime, so this is disallowed.
Hence b is not a multiple of 3. This leads to
b2 ≡ 1 (mod 3), which means that
d ≡ 1 (mod 3). However, this in turn leads
to c2 ≡ 2 (mod 3), which is not possible as
no square is of the form 2 (mod 3). As both
the possibilities have led to contradictions,
we are forced to conclude that a is not a
multiple of 3. Hence we have
a2 ≡ 1 (mod 3).

Now we focus attention on b. If 3 | b, then
the relation c2 = 2b2 − a2 would imply that
c2 ≡ −1 (mod 3); but no square is of this
form. It follows that b is not a multiple of 3.
Hence we have b2 ≡ 1 (mod 3). From this
it follows that d is a multiple of 3.

(From this, one may deduce that c too is not
a multiple of 3; we again use the relation
c2 = 2b2 − a2. So all three of a, b, c are
non-multiples of 3. However, we do not
need to use this fact.)

Since 8 | d and 3 | d, it follows that 24 | d,
as required. �
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Remark. Here are a few triples (a, b, c) of
coprime positive integers for which a2, b2

and c2 are in arithmetic progression (d is the
common difference):

(a, b, c)
(
a2, b2, c2

)
d

(1, 5, 7) (1, 25, 49) 24

(1, 29, 41) (1, 841, 1681) 840

(7, 13, 17) (49, 169, 289) 120

(7, 17, 23) (49, 289, 529) 240

(17, 25, 31) (289, 625, 961) 336

(23, 37, 47) (529, 1369, 2209) 840

(31, 41, 49) (961, 1681, 2401) 720

(v) In △ABC, the angles opposite AB and AC
have equal measure, i.e., �ABC = �ACB.
Prove that sides AB and AC have equal length.

Solution. In Euclid’s text, this proposition
comes immediately after the proposition
that the base angles of an isosceles triangle
are equal. So the only congruence result
available to us is the SAS congruence
theorem. The way Euclid handles this
restriction is remarkable. It is a masterly
demonstration of proof by contradiction.
(As earlier, we have modified Euclid’s
original proof, to the extent of using words
and sentences that would be more familiar
to us in the current time.)

We are told that in △ABC,
�ABC = �ACB. We must prove that
AB = AC. We shall suppose the contrary

and show that this supposition leads to a
contradiction.

Suppose that equality does not hold, i.e.,
AB ̸= AC. Then one of them is greater than
the other. Without loss of generality, we
may suppose that AB > AC.

Locate point D on side AB such that
DB = AC (see Figure 2). This is possible as
we have assumed that AB > AC.

A

B C

D

Figure 2.

Now consider the two triangles, △ACB and
△DBC. We have: AC = DB (by
construction); CB = BC (this is a shared
side); and �ACB = �DBC (this is given;
remember that �DBC is the same as
�ABC). It follows (SAS congruence) that
△ACB is congruent to △DBC.

But this is absurd, as △DBC is contained
strictly within △ACB. We have reached a
self-contradiction.

The contradiction tells us that our initial
supposition is itself incorrect; that is, the
supposition that AB ̸= AC is false.

Hence AB = AC. �
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A Visual Proof that (a + b)2 ≠ a2 + b2

Many students have been drilled to remember that (a + b)2 ≠ 
a2 + b2. But a picture that makes sense can create a much more 
lasting impression and long term learning. 

Figure 1 may persuade students that (a + b)2 ≠ a2 + b2. 

The smaller inner square has sides of length √(a2 + b2) since each 
side is the hypotenuse of a right triangle with legs a and b, so 
the area of the inner square is [√(a2 + b2)]2 = a2 + b2. 

The larger outer square has an area of (a + b)2, so (a + b)2 ≠  
a2 + b2. 

Furthermore, the combined area of the four triangles is 2ab, which is how much the area of the 
large square exceeds that of the smaller square. 

That is, (a + b)2 = a2 + b2 + 4 ab 
2

 = a2 + b2 + 2ab.

Figure 1: Seeing the difference

b

b

b

b

a

a

a

ab 
2

ab 
2

ab 
2

ab 
2

a

a2 + b2

√(a2 + b2)

√(a2 + b2)

√(a2 + b2)

√(a2 + b2)

MAKING

SENSE OF

MATHEMATICS


