Problems for the Senior School

Problem Editors : PRITHWIJIT DE \& SHAILESH SHIRALI

Problems for Solution

Problem IV-3-S. 1

Determine all possible integral values of N such that $N(N-101)$ is the square of a positive integer.

Problem IV-3-S. 2

Let R and S be two cubes with sides of lengths r and s, respectively, where r and s are positive integers. Show that the difference of their volumes numerically equals the difference of their surface areas if and only if $r=s$.

Problem IV-3-S. 3

Suppose $S=\{0,1\}$ has the following addition and multiplication rules:

$$
\begin{aligned}
& 0+0=0, \quad 0+1=1+0=1, \quad 1+1=0, \\
& 0 \times 0=1 \times 0=0 \times 1=0, \quad 1 \times 1=1 .
\end{aligned}
$$

(The rules will make more sense if you think of 0 as representing Even, and 1 as representing Odd. For example, the sum of two Odd numbers is Even, and the product of two Odd numbers is Odd.)
A system of polynomials is defined with coefficients in S. The sum and product of two polynomials in the system are the usual sum and product, respectively, where for the addition and multiplication of coefficients the above rules of addition and multiplication apply. For example:

$$
\begin{aligned}
& (x+1) \times\left(x^{2}+x+1\right) \\
& \quad=x^{3}+(1+1) x^{2}+(1+1) x+1 \\
& \quad=x^{3}+0 x^{2}+0 x+1=x^{3}+1 .
\end{aligned}
$$

Show that in this system $x^{3}+x+1$ is not factorisable, that is, one cannot write

$$
x^{3}+x+1=(a x+b) \times\left(c x^{2}+d x+e\right)
$$

where $a, b, c, d, e \in S$.

Problem IV-3-S. 4

Consider all non-empty subsets of the set $\{1,2$ $3, \ldots, n\}$. For each such subset, find the product of the reciprocals of each of its elements. Denote the sum of all these products by a_{n}. For example,

$$
\begin{aligned}
a_{3}= & \frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{1 \times 2}+\frac{1}{1 \times 3}+\frac{1}{2 \times 3} \\
& +\frac{1}{1 \times 2 \times 3} \\
= & \frac{6+3+2+3+2+1+1}{6}=3 .
\end{aligned}
$$

Prove that $a_{n}=n$ for all positive integers n.

Problem IV-3-S. 5

Show that the polynomial $x^{8}-x^{7}+x^{2}-x+15$ has no real zero.

Solution to problem IV-2-S. 1

Starting with any three-digit number n we obtain new number $f(n)$ which is equal to the sum of the three digits of n, their three products in pairs and the product of all three digits. (Example: $f(325)=(3+2+5)+(6+15+10)+30=71$. Find all three-digit numbers such that $f(n)=n$ [Adapted from British Mathematical Olympiad, 1994]
Let $n=100 a+10 b+c$ where $a, b, c \in\{0,1, \ldots, 9\}$, $a \neq 0$. Then $f(n)=a+b+c+a b+b c+c a+a b c$, so if $f(n)=n$ then we must have

$$
\begin{equation*}
99 a+9 b=a b+b c+c a+a b c . \tag{1}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
a(99-b-c-b c)=b(c-9) . \tag{2}
\end{equation*}
$$

Observe that $99-b-c-b c \geq 0$ and
$c-9 \leq 0$. Thus equation (2) holds if and only if $c=9$ and $b+c+b c=99$, and the latter relation shows that $b=9$ as well. But when $b=c=9$, both sides of (1) reduce to $99 a+81$, and the equation reduces to an identity. Thus a is not unique but can take any value between 1 and 9 . Hence the three-digit numbers n satisfying
$f(n)=n$ are 199, 299, 399, 499, 599, 699, 799, 899 and 999.

Solution to problem IV-2-S. 2

Solve in integers the equation
$x+y=x^{2}-x y+y^{2}$
The given equation can be written as:

$$
\begin{equation*}
(x-y)^{2}+(x-1)^{2}+(y-1)^{2}=2 \tag{3}
\end{equation*}
$$

If $x=y$ then $|x-1|=|y-1|=1$, whence $(x, y)=(0,0),(2,2)$. If $x \neq y$ then $|x-y|=1$ and either $x=1$ or $y=1$. If $x=1$ then $y=0$ or $y=2$. Thus the solutions are $(x, y)=$
$(1,0),(1,2)$. Since $\left(y_{0}, x_{0}\right)$ is also a solution if
$\left(x_{0}, y_{0}\right)$ is a solution, $(x, y)=(0,1),(2,1)$ are also integer solutions of the equation. Thus the
integer solutions are $(x, y)=(0,0),(0,1),(1,0)$, $(1,2),(2,1),(2,2)$.
Solution to problem IV-2-S. 3
Let a, b, c be the lengths of the sides of a scalene triangle and A, B, C be the opposite angles. Prove that

$$
2(A a+B b+C c)>A b+A c+B a+B c
$$

$$
+C a+C b
$$

Without loss of generality, assume that $a>b>c$. Then $A>B>C$. Now:

$$
\begin{aligned}
& 2(A a+B b+C c) \\
&-(A b+A c+B a+B c+C a+C b) \\
& \quad=(A-B)(a-b)+(A-C)(a-c) \\
& \quad+(B-C)(b-c) .
\end{aligned}
$$

Clearly the right-hand side is positive
Solution to problem IV-2-S. 4 Three positive real numbers a, b, c are such that

$$
a^{2}+5 b^{2}+4 c^{2}-4 a b-4 b c=0
$$

Can a, b, c be the lengths of the sides of a triangle? Justify your answer. [Regional Mathematical Olympiad, 2014]
No. Note that $a^{2}+5 b^{2}+4 c^{2}-4 a b-4 b c=$ $(a-2 b)^{2}+(b-2 c)^{2}$, hence the stated condition implies that $(a-2 b)^{2}+(b-2 c)^{2}=$ 0 , which in turn implies that $a: b: c=$ $4: 2: 1$, i.e., $b+c: a=3: 4$. But this violates the triangle inequality, for $b+c$ must exceed a (strictly).

Solution to problem IV-2-S. 5
Let D, E, F be the points of contact of the incircle of an acute-angled triangle $A B C$ with the sides $B C, C A, A B$, respectively. Let I_{1}, I_{2}, I_{3} be the incentres of the triangles $A F E, B D F, C E D$ respectively. Prove that the lines $I_{1} D, I_{2} E, I_{3} F$ concur. [Adapted from the Regional Mathematical Olympiad, 2014]

Observe that $\Varangle A F E=\Varangle A E F=90^{\circ}-\frac{1}{2} A$ and $\Varangle F D E=\Varangle A E F=90^{\circ}-\frac{1}{2} A$. Again,
$\Varangle E I_{1} F=90^{\circ}+\frac{1}{2} A$. Hence:

$$
\Varangle E I_{1} F+\Varangle F D E=180^{\circ},
$$

so I_{1} lies on the incircle. Also:

$$
\Varangle I_{1} F E=\frac{1}{2} \Varangle A F E=\frac{1}{2} \measuredangle A E F=\Varangle I_{1} E F .
$$

Thus $I_{1} E=I_{1} F$. But then they are equal chords of a circle, so they subtend equal angles at the circumference. Therefore $\Varangle I_{1} D F=\measuredangle I_{1} D E$ and so $I_{1} D$ is the internal bisector of $\measuredangle F D E$. Similarly we can show that $I_{2} E$ and $I_{3} F$ are internal bisectors of $\Varangle D E F$ and $\Varangle D F E$, respectively. Thus the three ines $I_{1} D, I_{2} E, I_{3} F$ are concurrent at the incentre of triangle $D E F$.

AWARDS

ICMI AWARDS 2015

The International Committee for
Mathematics Instruction (ICMI) has just Mathematics Instruction (ICMI) has just
nnounced the recipients of the 2015 Felix Klein and Hans Freudenthal Awards:
Felix Klein Medal: Professor Alan J. Bishop, Emeritus Professor of Education at Monash University, Melbourne.
Hans Freudenthal Medal: Professor Jill Adler, Chair of Mathematics Education, University of the Witwatersrand, South Africa
The medals will be awarded in the opening ceremony of the International Congress or Mathematics Education (ICME-13) to
be held in July 2016 in Hamburg.

Here are brief summaries excerpted from the official citations released by he Awards Committee. See the website a sense of the history of the ICMI and a sense of the work done by Felix Klein and by Hans Freudenthal.

ALAN J. BISHOP

The Felix Klein medal is awarded for life-time achievement in mathematics education research. [[It] is aimed at acknowledging scholars who have shaped our field over their lifetimes. Past

candidates
have been have been and have had an impact both at the national
level and the level and the
international
[They international
level. [They have made
substantial
ntroduced new research contributions, introduced new issues, ideas and perspectives. Additional
considerations have included leadership roles, mentoring, and peer recognition. Alan J. Bishop, Emeritus Professor of Monash University, Australia is instrumental in bringing the political, social, and cultural dimensions of mathematics education to the attention of
the field. His early research was on spatial the field. His early research was on spatial
abilities and visualization, but later he worked on the process of mathematical enculturation and how it is carried out in different countries. Subsequently he developed the notion of mathematics
as a cultural product. Over more than 45 as a cultural product. Over more than 45
years of sustained, consistent work, this led to a great deal of work on the political and social dimensions of mathematics education.

Alan Bishop served as editor of Educational Studies in Mathematics
from 1979 to 1989. In 1980, he founde and became the series editor of Kluwer's Mathematics Education Library. He served as the chief editor for man editions of the International Handbook of Mathematics Education. Through his tireless work in the area of publication, he enabled research in mathematics His education was at Harvard and later at Hull. After a stint at Cambridge University he moved to Monash University, Australia. Through the Association of Teachers of Mathematics, he worked as a mentor to numerous teachers and supervised many distinguished internationally. Through his work in forging links between research and practice, he helped mathematic educators establish communities of inquiry by teaching courses, speaking research and development projects, and serving as a consultant, a project evaluator, and an external examine
As noted by one of the nominators, "Alan is an excellent scholar and researcher who shaped our field not only over his
lifetime but also over its lifetime not lifetime but also over its lifetime, not only in England
internationally."

Review of
 The Sand Reckoner

by Gillian Bradshaw ${ }^{1}$

'There was a world there, a world without material existence but luminous with pure reason, and they couldn't see it!'

Archimedes (Syracuse, 287 BC-212 BC) is generally believed to have been the greatest mathematician of antiquity, and ertainly one of the three greatest of all time (along with Newton and Gauss). He is probably known best for his articulation of what has come to be known as the Archimedes principle, or rather for the entertaining scene that is said to have ensued upon its discovery. The story goes as follows
Archimedes was asked by King Hieron of Syracuse to determine whether a gold wreath he had commissioned and subsequently received was, in fact, silver. While turning this problem over in his mind, Archimedes chanced to go for a bath, and it struck him, as he bathed, that the volume of water displaced by his being in the bath was equal to the volume of his own body. When he made his discovery, he is said to have run straight out of the bath and his home naked, shouting 'Eureka, eureka!' ('I have found it!') He used this rule of displacement to determine whether the crown actually was pure and weighed as much as a pure gold object of the same volume.
${ }^{1}$ The title of the novel is the name of a treatise by Archimedes in which he sets out to estimate the number of grains of sand it would take to fill the universe. In the opening scene of the novel, Bradshaw's to imagine values large enough to express the

Keywords: Archimedes, Syracuse, Eureka

