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This idea of repeating a similar shape (often at 
a different scale) over and over again, is called 
self-similarity. In other words, a self-similar image 
contains copies of itself at smaller scales. A simple 
example appears in Figure 2: a repeated pattern 
for a square that is copied, rotated and shrunk by 
a factor of 1/√2.

Figure 2. A self–similar design 

Of course you can do this with typographical 
designs as well, such as the design for the word 
“Zoom” in Figure 3. 

Figure 3. A self-similar ambigram for ZOOM 

Examining self-similarity leads to a discussion of 
infinity, iteration and recursion, some of the ideas 
we discuss in this article. 

Before taking a serious look at self-similarity, we 
present (see Figure 4) a rotational-ambigram 
of “self-similarity,” which is not self-similar. 
However, below it is another version of the 
same design, where the word “self” is made up 
of little rotationally symmetric pieces of “self” 
and similarity is made up of little ambigrams of 
“similarity” and, most importantly the hyphen 
between the words is the complete ambigram 
for “self-similarity.” So this leads to the question: 
What do you think the hyphen in the hyphen is 
made of?

Self similarity and Fractals 
Self-similar shapes are all around us, from clouds 
to roots, from branches on trees to coastlines, 
from river deltas to mountains. The idea of 
self-similarity was popularized by Benoit B. 
Mandelbrot, whose 1982 book “The Fractal 
Geometry of Nature” showed how self-similar 
objects known as ‘fractals’ can be used to model 
‘rough’ surfaces such as mountains and coast-
lines. Mandelbrot used examples such as these to 
explain how when you measure a coastline the 
length of the line would increase as you reduced 
the unit of measurement. Such convoluted folds 
upon folds that lead to increased length (or in the 
case of 3-d objects, increased surface area) can be 
seen in the structure of the alveoli in the human 
lungs as well as in the inside of our intestines. 
The volume does not increase by much, while the 
surface area increases without limit. 

Figure 5 is an ambigram of “Fractal” which 
illustrates Mandelbrot’s own definition of fractals: 
A fractal denotes a geometric shape that breaks 
into parts, each a small scale model of the original.

Figure 4: (Top) A rotational ambigram for 
“self-similarity.” (Bottom) The strokes in the 
first ambigram are now replaced by words. 
The “self” is made up of tiny versions of 
“self” and “similarity” of smaller versions of 
“similarity” (each of which are ambigrams of 
course). That is not all, the hyphen is made 
up of a tiny version of the entire design! 
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Figure 5: A self-similar, fractal ambigram for “Fractal”

In other words, fractals are geometrical shapes 
that exhibit invariance under scaling i.e. a piece of 
the whole, if enlarged, has the same geometrical 
features as the entire object itself. The design of 
Figure 6 is an artistic rendition of a fractal-like 
structure for the word “Mandelbrot”.

Figure 6. A fractal ambigram for “Mandelbrot”  

Speaking of Mandelbrot, what does the middle 
initial “B” in Benoit B. Mandelbrot stand for? A 
clue is provided in Figure 7.  

Figure 7. Puzzle: What does the B in “Benoit B 
Mandelbrot” stand for? 

Answer at the end of the article.

It is clear that the idea of infinity and infinite 
processes are an important aspect of fractals and 
self-similarity. We now examine the concept of 
infinity typographically and mathematically. 

Infinity 
Infinity means without end, or limitless. 
Mathematically speaking, a finite set has a definite 
number of elements.  An infinite set is a set that 
is not finite. The word infinity is also used for 
describing a quantity that grows bigger and 
bigger, without limit, or a process which does not 
stop.  

Figure 8 has two designs for “infinity” subtly 
different from each other. Notice how in the first 
design the chain is created by “in” mapping to 
itself and “finity” mapping to itself. In contrast 
the second design breaks the word up differently, 
mapping “ity” to “in” and “fin” to itself.

Figure 8. Two ambigrams for “infinity”.  
The first wraps around a circle and the 

second says infinity by word and symbol!
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The first design wraps “infinity” around a circle. 
You can go round and round in a circle, and keep 
going on, so a circle can be said to represent an 
infinite path but in a finite and understandable 
manner. The second design is shaped like the 
symbol for infinity! 

In keeping with the idea of self-similarity here 
are two other designs of the word “infinite”. 
In fact there is a deeper play on the word as it 
emphasizes the finite that is in the infinite. The 
two designs in Figure 9 capture slightly different 
aspects of the design. The first focuses on mapping 
the design onto a sphere while the second is a 
self-similar shape that can be interpreted in two 
different ways. Either being made of an infinite 
repetition of the word “finite” or the infinite 
repetition of the word “infinite” (where the shape 
that reads as the last “e” in the word “finite” can be 
read as “in” in the word “infinite” when rotated by 
90 degrees). 

Infinities are difficult to grasp and when we try to 
apply the rules that worked with finite quantities 
things often go wrong. For instance, in an infinite 
set, a part of the set can be equal to the whole! The 
simplest example is the set of natural numbers, 
and its subset, the set of even numbers.  

The set ℕ = {1, 2, 3, 4, ...} of natural numbers is 
infinite. Now consider the set of even numbers  
𝔼 = {2, 4, 6, 8, ...} Clearly, the set of even numbers 
has half the number of elements of the set of 
natural numbers, doesn’t it? 

But not so quick! Things are tricky when it comes 
to infinite sets. We need to understand what it 
means for two sets to have an equal number of 
elements. Two sets have an equal number of 
elements when they can be put in one to one 
correspondence with each other. Think of children 
sitting on chairs. If each child can find a chair to 
sit on, and no chair is left over, then we know that 
each child corresponds to a chair, and the number 
of children is the same as the number of chairs.

Returning to the natural numbers, each number n 
in ℕ corresponds to the number 2n in 𝔼 . So every 
element of ℕ corresponds to an element of 𝔼 and 
vice versa.

Thus though one set may intuitively look like it is 
half the other it is in fact not so! Our intuition is 
wrong, the sets 𝔼 and N have the same number of 
elements. Since 𝔼 is a part of ℕ, you can see that 
when it comes to infinite sets, a part can be equal 

Figure 9. Two ambigrams for “infinite”, a play on the finite in infinite. Is the  
second design an infinite repetition of the word “finite” or “infinite?” 
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to the whole. In fact, this part-whole equivalence 
has sometimes been used to define an infinite set.

Another interesting example where a part is equal 
to the whole, is provided by a fractal known as the 
Sierpinski Carpet.

The Sierpinski Carpet
The Sierpinski Carpet, like all fractals, is generated 
using the process of iteration. We begin with a 
simple rule and apply it over and over again.

Begin with a unit square, and divide the square 
into 9 equal parts. Remove the middle square. 
Now for each of the remaining 8 squares, we do 
the same thing. Break it into 9 equal parts and 
remove the middle square. Keep going on in this 
way till you get this infinitely filigreed Swiss-
cheese effect. See Figure 10 for the first couple of 
steps and then the fifth stage of the carpet.

Figure 10. The Sierpinski Carpet

Which leads to the question: What is the total area 
of all the holes? Here is one way of computing the 
area of the holes in the Sierpinski Carpet. The first 
hole has area 1/9. In Step 2, you will remove 8 
holes, each with area 1/9 th of the smaller square; 
so you will remove 8 holes with area 1/92  or 

 8/92.  In Step 3, for each of the smaller 8 
holes, we remove 8 further holes with area 1/93, 
so the area removed is 82/93.  In this manner it is 
easy to see that the total area of the hole is:

To see why, we use the formula for the sum of the 
infinite Geometric Series:

How crazy is that! The area of the holes (taking 
away just 1/9th of a square at a time) is equal to 
the area of the unit square! Thus the hole is equal 
to the whole!

This seemingly contradictory statement has 
inspired the following design—where the words 
whole and hole are mapped onto a square – with 
the letter o representing the hole in the Sierpinski 
carpet. Of course as you zoom in, the whole and 
hole keep interchanging. We call this design  
(w)hole in One (in keeping with the idea the area 
of the hole is equal to the whole of the unit square).

Figure 11. Fractal Ambigrams for “WHOLE” and 
“HOLE”, a (w)hole in One.

The repetitive process of applying a set of 
simple rules that leads amazing designs like the 
Sierpinski carpet (and other fractal shapes) is 
called iteration.
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Graphical interpretations of iteration
The process of iteration can be used to generate 
self-similar shapes. Graphically, we simply 
superimpose the original shape with a suitably 
scaled down version of the initial shape, and then 
repeat the process. The nested squares of Figure 2 
is perhaps the simplest example of creating a self-
similar structure using this process. 

Essentially, such figures emerge from the repeated 
application of a series of simple steps—a program 
as it were, applied iteratively to the result of the 
previously applied rule. In this manner we can 
arrive at shapes and objects that are visually rich 
and complex.

Here is another, more creative, way to graphically 
interpret the idea of iteration.

Figure 12: An ambigram of “iteration”,  
illustrating a graphical approach to a part can be 

equal to the whole. 

At one level the first ambigram in Figure 12 can 
be read as a rotational ambigram for the word 
“iteration.” However if you zoom into the design 
(see zoomed figures below) you will see that each 
of the strokes is made of smaller strokes that in 
turn spell iteration.

In fact you can go down one more level and see 
“iteration” all over again. Theoretically we could 
do this forever, (within the limits of computational 
technology and visual resolution of screen, print 
and eye!). A similar idea is explored in the design 
of the word “self-similarity” (Figure 4) specifically 
in the design of the hyphen.

There are other fascinating examples of such 
iterative techniques, one of which we examine 
next.

The Golden Mean
Another example of a mathematically and visually 
interesting structure is the Golden Rectangle (and 
its close relative the Golden Mean). The Golden 
Mean appears as the ratio of the sides of a Golden 
Rectangle. A Golden Rectangle is such that if you 
take out the largest square from it, the sides of the 
resulting rectangle are in the same ratio as the 
original rectangle. Suppose the sides of the Golden 
Rectangle are a and b, where b is smaller than a. 
The ratio a/b turns out to be the Golden Mean 
(denoted by �). The largest square will be of side 
b. Once you remove it, the sides of the resulting 
rectangle are b and a  ̵ b. From this, it is easy to 
calculate the ratio a/b and find that it equals .

If you begin with a Golden Rectangle and keep 
removing the squares, you will get a nested 
series of Golden Rectangles (see the underlying 
rectangles in Figure 14). The resulting figure 
shows self-similarity.

You may connect the diagonals using a spiral to 
obtain an approximation to what is called the 
Golden Spiral. Figure 13 shows an ambigram of 
“Golden Mean”, placed in the form of a Golden 
Spiral inside a series of nested Golden Rectangles.
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Figure 13. A rotationally symmetric chain-ambigram 
for the phrase “Golden Mean” mapped onto a  

Golden Spiral.

The Golden Mean appears in different contexts, 
in mathematics, in artistic circles, and even in the 
real world. It is closely related to the Fibonacci 
Numbers, namely 1, 1, 2, 3, 5, 8, 13, 21, .... Note 
that the Fibonacci Numbers begin with 1 and 1, 
and then each number the sum of the previous 
two numbers. If you take the ratio of successive 
Fibonacci numbers, the ratio converges to the 
Golden Mean.

The Fibonacci numbers are an example of a 
recursively defined sequence, where a few initial 
terms are defined, and then the sequence is built 
up by using the definition of the previous term  
(or terms).

Recursion and Pascal’s Triangle
Recursion is similar to iteration. While iteration 
involves applying a simple rule to an object 
repeatedly, like in the creation of the Sierpinski 
Carpet, recursion involves using the results of a 
previous calculation in finding the next value, as in 
the definition of the Fibonacci numbers.

Fractals are usually obtained by iteration. Thus it 
is rather surprising that the fractal of Figure 14, 
called the Sierpinski triangle, may also be obtained 
using a recursive process.

The triangle in Figure 14 is a binary Pascal’s 
triangle, where you use binary arithmetic (where   
0 + 0 = 0; 0 + 1 = 1 and, 1 + 1 = 0) to create the 
Pascal’s triangle. The recursion is as follows: Each 
row and column begins and ends with a 1. Every 
other number is found by the (binary) addition of 
numbers above it. The formula for the recursion is 

F (n + 1, k) = F (n, k – 1) + F ( n, k )

where F (n,k) is the term in the nth row and kth 
column, for n = 0, 1, 2, 3, ... and k = 0, 1, 2, 3, ... 
and the rules of binary arithmetic are used. In 
addition, we need the following values: 

F (n, 0) = 1 = F (n,n).

This recurrence relation is the recurrence for 
generating Pascal’s Triangle, satisfied by the 
Binomial coefficients.

Figure 14. The binary Pascal’s Triangle is also  
the Sierpinski Triangle

Of course, you can guess how to obtain the 
Sierpinski Triangle by iteration. Begin with a 
triangle, remove the middle triangle in step 1, 
which will leave behind three triangles to which 
you do the same! And just repeat this process 
forever.

The fact that Pascal’s triangle is symmetric upon 
reflection, led to the design below (Figure 15)—
made up of row over row of mirror-symmetric 
designs for the word “Pascal” increasing in size 
as we go down the rows. We call this design “a 
Pascals Triangle” (a triangle made up of many 
“Pascals”) as opposed to “the Pascal’s triangle” 
(the triangle of or belonging to Pascal). (Author’s 
note: This design was created under psignificant 
work pressure. Can you guess why?)
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In conclusion

Answer to the Puzzle in Figure 7: The “B” in “Benoit B Mandelbrot” 
stands for Benoit B Mandelbrot… and so on forever! Here is another 
way of representing the same idea, that we call, “Just let me B.” 


