Hill Ciphers: Solutions to the Exercises

1. Using the substitution table the encrypted message (FY O. KI ZT WA QC) is converted to the following 2×6 matrix:

$$
\left[\begin{array}{cccccc}
5 & 14 & 10 & 25 & 22 & 16 \\
24 & 26 & 8 & 19 & 0 & 2
\end{array}\right]
$$

We pre-multiply this with the inverse of the matrix $\left[\begin{array}{ll}1 & 4 \\ 2 & 9\end{array}\right]$ which is $\left[\begin{array}{cc}9 & -4 \\ -2 & 1\end{array}\right]$. Thus:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
9 & -4 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cccccc}
5 & 14 & 10 & 25 & 22 & 16 \\
24 & 26 & 8 & 19 & 0 & 2
\end{array}\right]} \\
& \quad=\left[\begin{array}{cccccc}
-51 & 22 & 58 & 149 & 198 & 136 \\
14 & -2 & -12 & -31 & -44 & -30
\end{array}\right]
\end{aligned}
$$

Reducing the product modulo 29 we get:

$$
\left[\begin{array}{cccccc}
7 & 22 & 0 & 4 & 24 & 20 \\
14 & 27 & 17 & 27 & 14 & 28
\end{array}\right]
$$

Converting the numbers to characters, column wise, we obtain the original message:
HO W_AR E_YO U?

That is: HOW_ARE_YOU?
2. The secret message ITS DGN STX SJK DVO JHE TCB is first converted to a 3×7 matrix using the substitution table. We get:

$$
\left[\begin{array}{ccccccc}
8 & 3 & 18 & 18 & 3 & 9 & 19 \\
19 & 6 & 19 & 9 & 21 & 7 & 2 \\
18 & 13 & 23 & 10 & 14 & 4 & 1
\end{array}\right]
$$

We pre-multiply this matrix with the inverse of the encoding matrix $\left[\begin{array}{lll}0 & 2 & 4 \\ 1 & 4 & 7 \\ 2 & 3 & 6\end{array}\right]$ which is $\left[\begin{array}{ccc}3 & -3 & 2 \\ 8 & -6 & 3 \\ -5 & 4 & -2\end{array}\right]$. Thus

$$
\left[\begin{array}{ccc}
3 & -3 & 2 \\
8 & -6 & 3 \\
-5 & 4 & -2
\end{array}\right]\left[\begin{array}{ccccccc}
8 & 3 & 18 & 18 & 3 & 9 & 19 \\
19 & 6 & 19 & 9 & 21 & 7 & 2 \\
18 & 13 & 23 & 10 & 14 & 4 & 1
\end{array}\right]=\left[\begin{array}{ccccccc}
3 & 17 & 43 & 47 & -26 & 14 & 53 \\
4 & 27 & 99 & 120 & -60 & 42 & 143 \\
0 & -17 & -60 & -74 & 41 & -25 & -89
\end{array}\right]
$$

In Excel, the entry in position $(3,1)$ of the matrix is seen to be a very small number. It may be treated as 0 . Reducing the matrix modulo 29 we get the following:

$$
\left[\begin{array}{ccccccc}
3 & 17 & 14 & 18 & 3 & 14 & 24 \\
4 & 27 & 12 & 4 & 27 & 13 & 27 \\
29 & 12 & 27 & 13 & 12 & 4 & 27
\end{array}\right]
$$

(Note that 29 is equivalent to 0 in modulo 29.) We convert the numbers to characters, column wise and obtain the original message: DEA R_M OM_ SEN D_M ONE Y__

That is: DEAR_MOM_SEND_MONEY__
Note that the number of characters in the original message is 19 , which is not a multiple of 3 . Hence two underscores have been added at the end of the message so that the 3×7 matrix could be completed.
3. The same process as shown in Exercise 2 may be used to decode the message. The details are left to the reader. The original message is: HILL_CIPHERS_ARE_FUN.
4. Here is a 4×4 matrix whose determinant is equal to 1 :

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
5 & 0 & 2 & 3 \\
1 & 1 & 4 & 7 \\
8 & 2 & 3 & 6
\end{array}\right]
$$

There are clearly many more such matrices (in fact, infinitely many).

