Hill Ciphers: Solutions to the Exercises

 Using the substitution table the encrypted message (FY O. KI ZT WA QC) is converted to the following 2×6 matrix:

We pre-multiply this with the inverse of the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 9 \end{bmatrix}$

which is $\begin{bmatrix} 9 & -4 \\ -2 & 1 \end{bmatrix}$. Thus: $\begin{bmatrix} 9 & -4 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 14 & 10 & 25 & 22 & 16 \\ 24 & 26 & 8 & 19 & 0 & 2 \end{bmatrix}$ $= \begin{bmatrix} -51 & 22 & 58 & 149 & 198 & 136 \\ 14 & -2 & -12 & -31 & -44 & -30 \end{bmatrix}$

Reducing the product modulo 29 we get:

Converting the numbers to characters, column wise, we obtain the original message:

HO W_AR E_YO U?

That is: HOW_ARE_YOU?

2. The secret message **ITS DGN STX SJK DVO JHE TCB** is first converted to a 3 × 7 matrix using the substitution table. We get:

 $\begin{bmatrix} 8 & 3 & 18 & 18 & 3 & 9 & 19 \\ 19 & 6 & 19 & 9 & 21 & 7 & 2 \\ 18 & 13 & 23 & 10 & 14 & 4 & 1 \end{bmatrix}$ We pre-multiply this matrix with the inverse of the encoding matrix $\begin{bmatrix} 0 & 2 & 4 \\ 1 & 4 & 7 \\ 2 & 3 & 6 \end{bmatrix}$ which is $\begin{bmatrix} 3 & -3 & 2 \\ 8 & -6 & 3 \\ -5 & 4 & -2 \end{bmatrix}$. Thus $\begin{bmatrix} 3 & -3 & 2 \\ 8 & -6 & 3 \\ -5 & 4 & -2 \end{bmatrix} \begin{bmatrix} 8 & 3 & 18 & 18 & 3 & 9 & 19 \\ 19 & 6 & 19 & 9 & 21 & 7 & 2 \\ 18 & 13 & 23 & 10 & 14 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 17 & 43 & 47 & -26 & 14 & 53 \\ 4 & 27 & 99 & 120 & -60 & 42 & 143 \\ 0 & -17 & -60 & -74 & 41 & -25 & -89 \end{bmatrix}$

In Excel, the entry in position (3,1) of the matrix is seen to be a very small number. It may be treated as 0. Reducing the matrix modulo 29 we get the following:

							24
l	4	27	12	4	27	13	27
l	29	12	27	13	12	4	27

(Note that 29 is equivalent to 0 in modulo 29.) We convert the numbers to characters, column wise and obtain the original message: **DEA R_M OM_ SEN D_M ONE Y__**

That is: DEAR_MOM_SEND_MONEY__

Note that the number of characters in the original message is 19, which is not a multiple of 3. Hence two underscores have been added at the end of the message so that the 3×7 matrix could be completed.

- 3. The same process as shown in Exercise 2 may be used to decode the message. The details are left to the reader. The original message is: **HILL_CIPHERS_ARE_FUN.**
- 4. Here is a 4 \times 4 matrix whose determinant is equal to 1:

Γ	1	0	0	0]
	5	0	2	3
	1	1	4	0 3 7 6
	8	2	3	6

There are clearly many more such matrices (in fact, infinitely many).