Quadrilateral and Triangle: A Further Look

The following proposition was proved in the preceding pages: Let ABCD be a convex quadrilateral in which AD is not parallel to $B C$. Let $A D$ and $B C$ meet, when extended, at P. Let M, N be the midpoints of diagonals $A C, B D$, respectively. Then $[P M N]=\frac{1}{4}[A B C D]$. (Here square brackets denote area. See Figure 1.)

Figure 1.

It is of interest to look at this proposition through the lens given to us by George Pólya: that of tweaking a problem and seeing what we get. A very useful tweak is that of looking at
extreme situations. In our context we identify the following extreme configurations when the quadrilateral $A B C D$ becomes 'degenerate' in some way:
(1) Quadrilateral $A B C D$ collapses into a triangle because two of its vertices coincide.
(2) Quadrilateral $A B C D$ collapses into a triangle because three of its vertices are collinear.

There are other possibilities, but we will mention them later.
Cases (1) and (2) can be considered as part of a continuum. We imagine that vertex D lies somewhere along segment $A C$. If D coincides with either A or C, we have case (1), and if D lies in the interior of segment $A C$, we have case (2).

The first possibility, of D coinciding with A, does not yield anything of interest, as line $A D$ is undefined and hence point P is undefined as well. So we discard this.

If D coincides with C, we get a result which is well known; see Figure 2. For now, point P too coincides with C, which means that M is the midpoint of side $A C$ and N is the midpoint of side $B C$. The statement that $[P M N]=\frac{1}{4}[A B C D]$ now simply reads: $[C M N]=\frac{1}{4}[C A B]$. This is easily seen to be true via the midpoint theorem.

In this figure, both D and P coincide with C. So M is the midpoint of $A C$, and N is the midpoint of $B C$. It is easy to see that $[C M N]=\frac{1}{4}[C A B]$.

Figure 2.

It is always reassuring to find that a result being explored yields something well known as a special case. It means that the result under study cannot be completely wrong!
Of greater interest is the case when D lies in the interior of segment $A C$ (Figure 3). Once again, P coincides with C. Constructing points M and N as earlier (M is the midpoint of $A C$ and N is the midpoint of $B D$), the claim is: $[C M N]=\frac{1}{4}[C A B]$.

In this figure, D is any point on $A C$; N is the midpoint of $B D ; M$ is the midpoint of $A C$. The claim is now: $[C M N]=\frac{1}{4}[C A B]$.

Figure 3.

The claim is easy to prove:

$$
\begin{aligned}
{[C M N] } & =[C D N]-[M D N] \\
& =\frac{1}{2}[C D B]-\frac{1}{2}[M D B] \\
& =\frac{1}{2}[C M B]=\frac{1}{4}[C A B] .
\end{aligned}
$$

Remark. There are two other ways in which the configuration under study can become special or degenerate:
(3) Quadrilateral $A B C D$ becomes a trapezium in which the sides $A D$ and $B C$ are parallel to each other (so they do not meet when extended).
(4) Quadrilateral $A B C D$ becomes a parallelogram.

But these cases are clearly rather troublesome. In case (3), the extended sides $A D$ and $B C$ fail to meet each other at all, so the point P does not exist. Or one may say that " P lies at an infinite distance along line $B C$ (or line $A D$)". In case (4), the points M, N coincide; at the same time P lies at an infinite distance along line $B C$. (So (4) is in a way even "worse" than (3).)

A vector proof of the main proposition

We conclude with a vector proof of the proposition quoted at the start. Let position vectors of the various points in the diagram be with reference to P as the origin, and let the position vectors be denoted by lower case letters in boldface (Figure 4). Then:

$$
\begin{aligned}
2[P M N] & =\mathbf{m} \times \mathbf{n} \\
& =\frac{1}{2}(\mathbf{a}+\mathbf{c}) \times \frac{1}{2}(\mathbf{b}+\mathbf{d}), \\
\therefore 8[P M N] & =(\mathbf{a}+\mathbf{c}) \times(\mathbf{b}+\mathbf{d}) \\
& =\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{d}+\mathbf{c} \times \mathbf{b}+\mathbf{c} \times \mathbf{d} \\
& =\mathbf{a} \times \mathbf{b}+\mathbf{c} \times \mathbf{d}, \quad \text { since }\{A, D, P\} \text { and }\{B, C, P\} \text { are collinear. } \\
\therefore 4[P M N] & =\frac{1}{2}(\mathbf{a} \times \mathbf{b})-\frac{1}{2}(\mathbf{d} \times \mathbf{c}) \\
& =[P A B]-[P D C] \\
& =[A B C D] .
\end{aligned}
$$

The smooth elegance of this proof is a testimony to the power of the vector approach.

Figure 4.

