Tale of a Quadrilateral and a Triangle

This note is devoted to a proof of the following geometrical statement:

Let $A B C D$ be a convex quadrilateral in which $A D$ is not parallel to $B C$. Let $A D$ and $B C$ meet, when extended, at P. Let M and N be the midpoints of diagonals $A C$ and $B D$, respectively. Then the area of triangle PMN is one-quarter the area of quadrilateral $A B C D$.

We present the proof in the form of pictures for which we give a light justification in each case. We use the following notation: if X denotes any plane geometric figure, then $[X]$ denotes the area of X. So the square brackets stand for "area of ...".

Proposition

Try to find your own proof before reading on!

Proof in Seven Movements

Step 1.

$[A B N]=[A N D]=\frac{1}{2}[A B D]$.
Reason: $A N$ is a median of $\triangle A B D$.

Step 2.

$[C B N]=[C N D]=\frac{1}{2}[C B D]$.
Reason: $C N$ is a median of $\triangle C B D$.

Step 3.

$[A N C D]=\frac{1}{2}[A B C D]$.
Proof: Follows by addition of the equalities in Steps $1 \& 2$.

Step 4.

$[C M N]=\frac{1}{2}[$ CAN $]$
$[D M C]=\frac{1}{2}[D A C]$
Hence $[M N C D]=\frac{1}{2}[A N C D]$.
But $[A N C D]=\frac{1}{2}[A B C D]$.
Hence $[M N C D]=\frac{1}{4}[A B C D]$.

Step 5.

$$
\begin{aligned}
& {[P N B]=\frac{1}{2}[P D B],} \\
& {[C N B]=\frac{1}{2}[C D B] .}
\end{aligned}
$$

Now subtract:

$$
\begin{aligned}
& {[P N B]-[C N B]=[P N C],} \\
& {[P D B]-[C D B]=[P D C] .}
\end{aligned}
$$

Hence:

$$
[P N C]=\frac{1}{2}[P D C] .
$$

Step 6.

$$
\begin{aligned}
& {[P A M]=\frac{1}{2}[P A C],} \\
& {[D A M]=\frac{1}{2}[D A C] .}
\end{aligned}
$$

Now subtract:

$$
\begin{aligned}
{[P A M]-[D A M] } & =[P D M], \\
{[P A C]-[D A C] } & =[P D C] .
\end{aligned}
$$

Hence:

$$
[P D M]=\frac{1}{2}[P D C] .
$$

Step 7.

Consider the polygon PDMNC. We have:

$$
\begin{align*}
{[P D M N C] } & =[M N C D]+[P D C] \\
& =\frac{1}{4}[A B C D]+[P D C] . \tag{1}
\end{align*}
$$

We also have:

$$
\begin{align*}
{[P D M N C] } & =[P M N]+[P D M]+[P N C] \\
& =[P M N]+\frac{1}{2}[P D C]+\frac{1}{2}[P D C] \\
& =[P M N]+[P D C] . \tag{2}
\end{align*}
$$

Comparing equalities (1) and (2), we get:

$$
[P M N]=\frac{1}{4}[A B C D],
$$

as required.

BHARAT KARMARKAR is a freelance educator. He believes that learning any subject is simply a tool to learn better learning habits and a better aptitude; what a learner really carries forward after schooling is learning skills rather than content knowledge. His learning club, located in Pune, is based on this vision. He may be contacted at learningclubpune@gmail.com.

