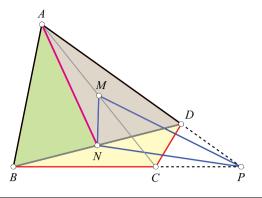

Tale of a Quadrilateral and a Triangle

T his note is devoted to a proof of the following geometrical statement:

Let ABCD be a convex quadrilateral in which AD is not parallel to BC. Let AD and BC meet, when extended, at P. Let M and N be the midpoints of diagonals AC and BD, respectively. Then the area of triangle PMN is one-quarter the area of quadrilateral ABCD.

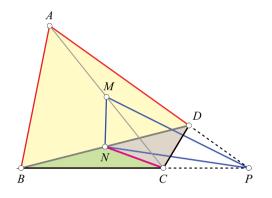
We present the proof in the form of pictures for which we give a light justification in each case. We use the following notation: if X denotes any plane geometric figure, then [X] denotes the area of X. So the square brackets stand for "area of ...".

Proposition

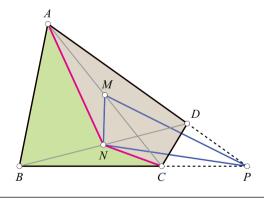

Try to find your own proof before reading on!

Bharat Karmarkar

25

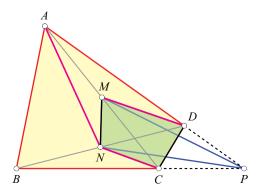

Proof in Seven Movements

Step 1.


 $[ABN] = [AND] = \frac{1}{2} [ABD].$ Reason: AN is a median of $\triangle ABD$.

Step 2.

 $[CBN] = [CND] = \frac{1}{2} [CBD].$ Reason: *CN* is a median of $\triangle CBD$.



 $[ANCD] = \frac{1}{2} [ABCD].$

Proof: Follows by addition of the equalities in Steps 1 & 2.

Step 4.

 $[CMN] = \frac{1}{2} [CAN]$ $[DMC] = \frac{1}{2} [DAC]$ Hence $[MNCD] = \frac{1}{2} [ANCD]$. But $[ANCD] = \frac{1}{2} [ABCD]$. Hence $[MNCD] = \frac{1}{4} [ABCD]$. Step 5.

$$[PNB] = \frac{1}{2} [PDB],$$
$$[CNB] = \frac{1}{2} [CDB].$$

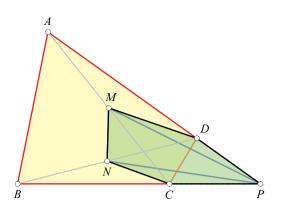
Now subtract:

$$[PNB] - [CNB] = [PNC],$$
$$[PDB] - [CDB] = [PDC].$$

Hence:

$$[PNC] = \frac{1}{2} [PDC]$$

Step 6.


$$[PAM] = \frac{1}{2} [PAC],$$
$$[DAM] = \frac{1}{2} [DAC].$$

Now subtract:

$$[PAM] - [DAM] = [PDM],$$
$$[PAC] - [DAC] = [PDC].$$

Hence:

$$[PDM] = \frac{1}{2} [PDC].$$

Step 7.

Consider the polygon *PDMNC*. We have:

$$[PDMNC] = [MNCD] + [PDC]$$
$$= \frac{1}{4} [ABCD] + [PDC].$$
(1)

We also have:

$$[PDMNC] = [PMN] + [PDM] + [PNC]$$

= [PMN] + $\frac{1}{2}$ [PDC] + $\frac{1}{2}$ [PDC]
= [PMN] + [PDC]. (2)

Comparing equalities (1) and (2), we get:

$$[PMN] = \frac{1}{4} [ABCD],$$

as required.

BHARAT KARMARKAR is a freelance educator. He believes that learning any subject is simply a tool to learn better learning habits and a better aptitude; what a learner really carries forward after schooling is *learning skills* rather than content knowledge. His learning club, located in Pune, is based on this vision. He may be contacted at learningclubpune@gmail.com.