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This proves the AM-GM inequality for two numbers. Observe how the inequality has reduced to the
well-known fact that a squared number is non-negative.

Equality holds if and only if
√

a −
√

b = 0, i.e., if and only if a = b, as claimed. �

Alternative formulation of the same idea. The proof presented above can be recast in a different manner as
follows. Let m = (a + b)/2 be the AM of a and b, and let g =

√
ab be their GM. Then a and b are

equidistant from m, and we can write

a = m + c, b = m − c

for some number c which could be either positive or negative or zero (note that c = 0 corresponds to the
case when a = b). This yields:

ab = (m + c)(m − c) = m2 − c2 ≤ m2, since c2 ≥ 0.

Since g2 = ab, we get:
g2 ≤ m2, i.e., g ≤ m,

since g ≥ 0, m ≥ 0. The equality sign will hold if and only if c = 0, i.e., if and only if a = b. It follows
that the GM is less than or equal to the AM, with equality if and only if the two numbers are identical. �

Isoperimetric property of the square. In Part-1 of this article (November 2016 issue of At Right Angles)
we proved the isoperimetric property of the square, namely: Among all rectangles sharing the same perimeter,
the square has the largest area. Among all rectangles sharing the same area, the square has the least perimeter.
Let us now show how this property follows from the AM-GM inequality.

Consider a rectangle with sides a and b. Its area is ab, and its perimeter is 2(a + b). Hence the side of the
square with equal perimeter is 2(a + b)/4 = (a + b)/2. Therefore the area of the square whose perimeter
is the same as that of the given rectangle is equal to (a + b)2/4. Now we have, by the AM-GM inequality:

√
ab ≤ a + b

2
, ∴ ab ≤ (a + b)2

4
,

with equality if and only if a = b. This proves that among all rectangles sharing the same perimeter, the
square has the largest area. The proof of the second assertion (“among all rectangles sharing the same area,
the square has the least perimeter”) follows in exactly the same way. (Please do fill in the details.) �
Here is a nice example of a result which follows from the AM-GM inequality:

Proposition 1. The sum of a positive number and its reciprocal cannot be less than 2. Moreover, the only
positive number for which the sum of the number and reciprocal equals 2 is 1.

Stated in symbols: if x is any positive number, then

x +
1
x
≥ 2,

with equality if and only if x = 1. For proof, we apply the AM-GM inequality to the two positive
numbers x and 1/x. Their geometric mean is

√
x · 1/x = 1, hence their arithmetic mean cannot be less

than 1. In other words:
x + 1/x

2
≥ 1, ∴ x +

1
x
≥ 2.

Moreover, equality holds if and only if x = 1/x, i.e., x = 1. (The other solution of the equation x = 1/x is
x = −1, but this does not need to be considered since x is supposed to be positive.) �
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Let a and b be non-negative numbers. Their arithmetic mean
m is the quantity (a + b)/2, and their geometric mean g is
the quantity

√
ab. For example, if the numbers are 2 and 8,

then the arithmetic mean is (2 + 8)/2 = 5 and the
geometric mean is

√
2 × 8 = 4. If the numbers are 1 and

25, then the arithmetic mean is 13 and the geometric mean
is 5. Observe that in both these instances, the arithmetic
mean (AM) exceeds the geometric mean (GM). We shall
show that this invariably happens; that is, it is invariably the
case that m ≥ g.

Theorem 1 (AM-GM inequality for two numbers). For any
two non-negative numbers a and b, it is always the case that

a + b
2

≥
√

ab.

Moreover, the equality sign holds if and only if a = b.

Proof. The most straightforward approach is to rewrite the
inequality in various equivalent forms as shown below:

a + b
2

≥
√

ab for all a, b ≥ 0

⇐⇒ a + b ≥ 2
√

ab for all a, b ≥ 0

⇐⇒ a − 2
√

ab + b ≥ 0 for all a, b ≥ 0.

The inequality in the last line is clearly true since

a − 2
√

ab + b =
(√

a −
√

b
)2

≥ 0.
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Proof. Multiplying out, we get:

(a + b) ·
(

1
a
+

1
b

)
= 1 + 1 +

a
b
+

b
a

= 2 +
a
b
+

b
a
.

Invoking Proposition 1, we have: a
b +

b
a ≥ 2, with equality if and only if a

b = 1, i.e., if and only if a = b.
The stated inequality thus follows. �

Proposition 3. Let a, b, c be positive real numbers. Then:

(a + b + c) ·
(

1
a
+

1
b
+

1
c

)
≥ 9,

with equality if and only if a = b = c.

Proof. Multiplying out, we get:

(a + b + c) ·
(

1
a
+

1
b
+

1
c

)
= 3 +

(
a
b
+

b
a

)
+

(
b
c
+

c
b

)
+

(a
c
+

c
a

)

≥ 3 + 2 + 2 + 2 = 9,

with equality if and only if a
b = 1 and b

c = 1 and c
a = 1, i.e., if and only if a = b = c.

Generalisation. The obvious generalisation of Propositions 2 and 3 is the following, which we state
without proof:

Proposition 4. Let a1, a2, . . . , an be n positive real numbers. Then:

(a1 + a2 + · · ·+ an) ·
(

1
a1

+
1
a2

+ · · ·+ 1
an

)
≥ n2,

with equality if and only if a1 = a2 = · · · = an.

Proposition 5. Let a, b, c be positive real numbers such that abc = 1. Then:

(1 + a)(1 + b)(1 + c) ≥ 8,

with equality if and only if a = b = c = 1.

Proof. The AM-GM inequality applied to the pairs {1, a}, {1, b} and {1, c} yields:

1 + a
2

≥
√

a,
1 + b

2
≥

√
b,

1 + c
2

≥
√

c.

Hence we have:
1 + a ≥ 2

√
a, 1 + b ≥ 2

√
b, 1 + c ≥ 2

√
c.

Multiplication yields:
(1 + a)(1 + b)(1 + c) ≥ 8

√
abc.

Since abc = 1, the desired result follows. Equality holds if and only if a = b = c = 1.

This proposition can be extended quite easily. For example, if a, b, c, d are positive real numbers such that
abcd = 1, then (1+ a)(1+ b)(1+ c)(1+ d) ≥ 16. Equality holds if and only if a = b = c = d = 1. �
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Figure 1. Graph of f (x) = x + 1/x

An extension, and a graphical representation. Proposition 1 can be extended in the following manner:
The sum of a nonzero real number and its reciprocal cannot lie between −2 and 2. That is, if x ̸= 0 is any real
number, then it is not possible that

−2 < x +
1
x
< 2.

The inequality shows itself in striking form when we draw the graph of the function f (x) = x + 1/x over
the real numbers (see Figure 1). There is a “forbidden band” between the lines y = −2 and y = 2, within
which the graph of the function never enters.

The graph itself is a hyperbola with centre (0, 0) and asymptotes x = 0 and y = x.

Applications of the AM-GM inequality for two variables
We now demonstrate the utility and versatility of the two-variable AM-GM inequality.

Proposition 2. Let a, b be positive real numbers. Then:

(a + b) ·
(

1
a
+

1
b

)
≥ 4,

with equality if and only if a = b.
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Given two positive numbers a, b (a > b), we construct the above diagram (Figure 2).

On a line ℓ we mark three points P,Q, R (in that order) such that PQ = b and PR = a. Next, we draw a
circle ω on QR as diameter; let its centre be O. We also draw a tangent PT to the circle from P. Note that
the radius of the circle is (a − b)/2, and also that PO = (a + b)/2 and PT ⊥ TO. The length of PT can
be computed in two different ways:

• By using the intersecting chords theorem:

PT 2 = PQ · PR = ab, ∴ PT =
√

ab;

• By using the Pythagoras theorem:

PT 2 = PO 2 − TO 2 =

(
a + b

2

)2

−
(

a − b
2

)2

= ab, ∴ PT =
√

ab.

Either way we see that PT =
√

ab.

Now in △PTO, which is right-angled at vertex T, the hypotenuse is PO; this is therefore the longest side
of the triangle. Hence we have: PT ≤ PO, i.e.,

√
ab ≤ a + b

2
.

Therefore the geometric mean of a and b cannot exceed the arithmetic mean of a and b.

For equality to hold, △PTO must be degenerate, with side TO shrinking to zero length. In other words,
we must have a = b for the geometric mean to be equal to the arithmetic mean. �

Extensions. A small modification of the diagram yields a substantial generalisation of the AM-GM
inequality.

42 At Right Angles  |  Vol. 6, No. 2, August 2017

Proposition 6. Let a, b, c be real numbers. Then:

a2 + b2 + c2 ≥ ab + bc + ca.

Equality holds if and only if a = b = c.

Proof. This is Problem 5 from the set given in Part-1 of this article (November 2016 issue).

Let us apply the AM-GM inequality to the pairs {a2, b2}, {b2, c2} and {c2, a2}. We get:

a2 + b2 ≥ 2ab,

b2 + c2 ≥ 2bc,

c2 + a2 ≥ 2ca.

Adding the three inequalities we get 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca. On dividing by 2, we get the
desired inequality.

For equality to hold, we must have equality in each of the three inequalities listed above. This obviously
requires that a = b = c. Hence the claim. �

Remark. As noted in the November 2016 issue, in the article on Napoleon’s theorem, the following
assertion is true in the domain of real numbers: If a2 + b2 + c2 = ab + bc + ca, then a = b = c. But in
the domain of complex numbers, a totally different conclusion holds, namely: If
a2 + b2 + c2 = ab + bc + ca, then the points corresponding to a, b, c are the vertices of an equilateral triangle.

Proposition 7. Let a, b, c be positive real numbers. Then:

a2

b2 +
b2

c2
+

c2

a2 ≥ b
a
+

c
b
+

a
c
.

Equality holds if and only if a = b = c.

Proof. The method used to prove Proposition 5 (above) works here as well. We leave the details for you to
fill in.

Geometric proof of the AM-GM inequality
We close this article by offering a geometric proof of the AM-GM inequality. It proves more than just the
AM-GM; several inequalities get proved simultaneously simply by exhibiting a certain diagram. The
geometric facts used are the following:

• From a point P outside a circle ω are drawn a tangent PT to ω and a line which intersects ω at points Q and
R. We now have the equality: PT 2 = PQ · PR. (This follows from the intersecting chords theorem
which we have used in previous articles of this magazine. Here is its general statement: In any circle ω, if
AB and CD are two chords which intersect at a point P which may lie either inside or outside ω, then
PA · PB = PC · PD.)

• In any triangle, the largest side is the one opposite the largest angle. This implies in particular that in a
right-angled triangle the largest side is the hypotenuse.
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Lastly, we apply the inverse function f −1 to this AM, i.e., we compute the number

f −1
(

f (a) + f (b)
2

)
.

We call this number the f-mean of a and b. Observe how this prescription applies to the HM, GM and
RMS:

HM: Let f (x) = 1/x; i.e., f maps each number to its reciprocal. (Here, the inverse function of f is f itself;
i.e., the function is its own inverse.) So from a, b we get the numbers 1/a, 1/b; then we get the AM
of these numbers, i.e.,

1
2

(
1
a
+

1
b

)
=

a + b
2ab

.

Lastly we apply f to this number; we get

f −1
(

a + b
2ab

)
=

2ab
a + b

.

We have obtained the harmonic mean of a and b.
GM: Let f (x) = log2 x; i.e., f maps each number to its logarithm to base 2. (In this case, the inverse

function of f is f −1(x) = 2x.) So from a, b we get the numbers log2 a, log2 b; then we get the AM
of these numbers, i.e.,

1
2
(log2 a + log2 b) =

1
2

log2(ab) = log2

√
ab.

Lastly we apply f −1 to this number; we get

2log2

√
ab =

√
ab.

We have obtained the geometric mean of a and b.
RMS: Let f (x) = x2; i.e., f maps each number to its square. (In this case, the inverse function of f is

f −1(x) =
√

x.) So from a, b we get the numbers a2, b2; then we get the AM of these numbers, i.e.,

a2 + b2

2
.

Lastly we apply f −1 to this number; we get
√

a2 + b2

2
.

We have obtained the root mean square of a and b.

Problems for you to solve
We close by offering a small list of problems for you to tackle. Most of them are based on the AM-GM
inequality.

(1) Let a, b, c be positive real numbers. Show that:

a
b
+

b
c
+

c
a
≥ 3.
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Figure 3 is the same as Figure 2 but with some extra line segments drawn. From T draw a perpendicular
TS to ℓ. Also draw a perpendicular to ℓ at O; let it intersect the circle at U. We now have the following
string of inequalities:

PS ≤ PT ≤ PO ≤ PU,

with equality if and only if a = b. We already have expressions for the lengths of PT and PO. Let us now
do the same for PS and PU. We have:

PS
PT

= cos�TPS =
PT
PO

, ∴ PS =
PT 2

PO
,

i.e.,

PS =
ab

(a + b)/2
=

2ab
a + b

.

We also have:

PU 2 = PO 2 + OU 2 =
(a + b)2

4
+

(a − b)2

4
, ∴ PU =

√
a2 + b2

2
.

The quantities
2ab

a + b
,

√
a2 + b2

2
are known respectively as the harmonic mean (HM) and the root mean square (RMS) of a and b. So we
have established that:

HM(a, b) ≤ GM(a, b) ≤ AM(a, b) ≤ RMS(a, b),
with equality if and only if a = b. Is it not beautiful that we have managed to get four inequalities from a
single diagram?

Remark. You may wonder why the HM is a mean, and why the RMS is a mean. In other words, what is
‘mean’ about the HM and the RMS? Why do we call them ‘means’? The underlying logic is revealed when
we state the commonalities between the HM, GM and RMS. Each one makes use of a particular
function-inverse function pair, (f, f −1). In each case, given the positive numbers a, b, we first apply f to
the numbers, thereby getting the f-numbers f (a), f (b) respectively. Then we compute the AM of these
two numbers; i.e., we compute the number

f (a) + f (b)
2

.
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Lastly, we apply the inverse function f −1 to this AM, i.e., we compute the number

f −1
(

f (a) + f (b)
2

)
.
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1
2

(
1
a
+

1
b

)
=

a + b
2ab

.
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f −1
(

a + b
2ab

)
=

2ab
a + b

.
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1
2
(log2 a + log2 b) =

1
2

log2(ab) = log2

√
ab.
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2log2

√
ab =

√
ab.
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a

b

P = (0, s)

Q = (s, 0)

M = (s/2, s/2)

Figure 4

Therefore, given that a + b = s and a ≥ 0, b ≥ 0, the least possible value of a2 + b2 is s2/2 and the
greatest possible value is s2.
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(2) Let a, b, c be positive real numbers. Show that:

a2

bc
+

b2

ca
+

c2

ab
≥ 3,

with equality if and only if a = b = c.
(3) Let a, b, c be positive real numbers. Show that:

(
a2b + b2c + c2a

)
·
(
ab2 + bc2 + ca2) ≥ 9a2b2c2,

with equality if and only if a = b = c.
(4) Let a, b, c be positive real numbers. Show that:

a3 + b3 + c3 ≥ a2b + b2c + c2a,

with equality if and only if a = b = c.

Solutions to problems from November 2016 issue

(1) (a) Which is larger, 31/3 or 41/4?

Raising both numbers to the 12th power, we get the numbers 34 = 81 and 43 = 64 respectively.
Since 81 > 64, it follows that 31/3 > 41/4.

(b) Which is larger, 41/4 or 51/5?

Since 45 = 1024 and 54 = 625 and 1024 > 625, we conclude that 41/4 > 51/5.
(2) (a) Which is larger, 21/3 or 31/4 ?

Since 24 < 33, we conclude that 21/3 < 31/4.
(b) Which is larger, 31/4 or 41/5 ?

Since 35 < 44, we conclude that 31/4 < 41/5.

(3) Which is larger: 1.1 +
1

1.1
or 1.01 +

1
1.01

?

Let x = 1.1 and y = 1.01; then x > y > 1. We have now:
(

x +
1
x

)
−

(
y +

1
y

)
= x − y +

y − x
xy

=
(x − y)(xy − 1)

xy
> 0,

since xy > 1. Hence 1.1 +
1

1.1
> 1.01 +

1
1.01

.

(4) If a, b are non-negative real numbers with constant sum s, what are the least and greatest values taken by
a2 + b2? Express the answers in terms of s.
We give a graphical solution. The set of pairs (a, b) of non-negative real numbers with constant sum s
corresponds to a line segment PQ (Figure 4). The set of pairs (a, b) for which a2 + b2 has some fixed
value k2 corresponds to a circle centred at the origin O, with radius k. This means that we need to
identify the smallest and the largest circles centred at the origin which have some contact with segment
PQ. These are clearly the two circles shown. The smaller one touches PQ at its midpoint M, and the
larger one passes through both P and Q.
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